Skip to main content Accessibility help

Three-dimensional electromagnetic simulation of monolithic radial transmission lines for Z-pinch

  • Chongyang Mao (a1), Xiaobing Zou (a1) and Xinxin Wang (a1)


The electromagnetic simulation of the monolithic radial transmission lines for future Z-pinch was performed. Focusing on the difference in the maximum transmitted power efficiency between the electromagnetic simulation and the circuit simulation, the monolithic radial transmission lines with different impedance profile (exponential, Gaussian, hyperbolic) were compared. The power efficiency for the exponential line is higher than that for the Gaussian lines and the hyperbolic line, which is similar to that from the circuit simulation. However, all the power efficiencies obtained with the electromagnetic simulation are about 15% lower than those obtained with the circuit simulation, indicating the existence of considerable non-TEM modes and a non-ignorable error in the circuit simulation based on the quasi-TEM mode approximation. In consideration of several monolithic radial transmission lines being stacked together and the flat electrodes required by the stacked lines, the hyperbolic line was compared with the exponential line with several wide radial slots cut on the flat electrodes. While the hyperbolic line has a little bit lower transmitted power efficiency than that of the exponential line, it is much easier in fabrication. For this reason, the hyperbolic line was recommended as the best choice.


Corresponding author

Address correspondence and requests for reprints to: Xinxin Wang, Department of Electrical Engineering, Tsinghua University, Beijing, China. E-mail:


Hide All
Deeney, C., Douglas, M.R., Spielman, R.B., Nash, T.J., Peterson, D.L., Eplattenier, P.L., Chandler, G.A., Seamen, J.F. & Struve, K.W. (1998). Enhancement of X-ray power from a z pinch using nested-wire Arrays. Phys. Rev. Lett. 81, 48834886.
Hu, Y., Qiu, A., Huang, T., Sun, F., Cong, P., Zeng, J., Zhang, X. & Lei, T. (2011). Simulation analysis of transmission-line impedance transformers with the Gaussian, exponential, and linear impedance profiles for pulsed-power accelerator. IEEE Trans. Plasma Sci. 39, 32273232.
Kuai, B., Wu, G., Qiu, A., Wang, L., Cong, P. & Wang, X. (2009). Soft X-ray emissions from neon gas-puff Z-pinch powered by Qiang Guang-I accelerator. Laser Part. Beams 27, 569577.
Mao, C., Zou, X. & Wang, X. (2014). Analytical solution of nonuniform transmission lines for Z-pinch. IEEE Trans. Plasma Sci. 42, 20922097.
Pozar, D.M. (2005). Microwave Engineer. New York: John Wiley & Sons.
Ramirez, J.J. (1997). The X-1 Z-pinch driver. IEEE Trans. Plasma Sci. 25, 155159.
Stygar, W.A., Cuneo, M.E., Headley, D.I., Ives, H.C., Leeper, R.J., Mazarakis, M.G., Olson, C.L., Porter, J.L.,Wagoner, T.C. & Woodworth, J.R. (2007). Architecture of petawatt-class z-pinch accelerators. Phys. Rev. 10, 030401.
Welch, D.R., Genoni, T.C., Rose, D.V., Bruner, N.L. & Stygar, W.A. (2008). Optimized transmission-line impedance transformers for petawatt-class pulsed-power accelerators. Phys. Rev. 11, 030401.
Wu, J., Wang, L., Qiu, A., Han, J., Li, M., Lei, T., Cong, P., Qiu, M., Yang, H. & Lv, M. (2011). Experimental investigations of X-pinch backlighters on QiangGuang-1 generator. Laser Part. Beams 29, 155160.
Zhang, R., Mao, C., Huang, K., Zou, X. & Wang, X. (2012). Comparison of nonuniform transmission lines with Gaussian and exponential impedance profiles for Z-pinch. IEEE Trans. Plasma. Sci. 40, 33953398.


Three-dimensional electromagnetic simulation of monolithic radial transmission lines for Z-pinch

  • Chongyang Mao (a1), Xiaobing Zou (a1) and Xinxin Wang (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed