Skip to main content Accessibility help
×
Home

Three criteria for particle acceleration in collisionless shocks

  • Antoine Bret (a1) (a2) and Asaf Pe'er (a3)

Abstract

Collisionless shocks have been the subject on many studies in recent years, due to their ability to accelerate particles. In order to do so, a shock must fulfill three criteria. First, it must be strong enough to accelerate particles efficiently. Second, both the upstream and the downstream must be collisionless. Third, the shock front must be surrounded by electromagnetic turbulence capable of scattering particles back and forth. We here consider the encounter of two identical plasma shells with initial density, temperature, and velocity n0, T0, v0, respectively. We translate the three criteria to the corresponding requirements on these parameters. A non-trivial map of the allowed region for particle acceleration emerges in the (n0, T0, v0) phase space, especially at low velocities or high densities. We first assess the case of pair plasma shells, before we turn to electrons/protons.

Copyright

Corresponding author

Author for correspondence: Antoine Bret, ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain andInstituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real, Spain, E-mail: antoineclaude.bret@uclm.es

References

Hide All
Bale, SD, Mozer, FS and Horbury, TS (2003) Density-transition scale at quasiperpendicular collisionless shocks. Physical Review Letters 91, 265004.
Blandford, R and Eichler, D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Physics Reports 154, 1.
Blandford, R and Ostriker, J (1978) Particle acceleration by astrophysical shocks. Astrophysical Journal 221, L29.
Bohm, D and Gross, EP (1949 a) Theory of plasma oscillations. a. Origin of medium-like behavior. The Physical Review 75, 1851.
Bohm, D and Gross, EP (1949 b) Theory of plasma oscillations. b. Excitation and damping of oscillations. The Physical Review 75, 1864.
Bouquet, S, Romain, T and Chieze, JP (2000) Analytical study and structure of a stationary radiative shock. The Astrophysical Journal Supplement Series 127, 245252.
Bouquet, S, Stéhlé, C, Koenig, M, Chièze, J-P, Benuzzi-Mounaix, A, Batani, D, Leygnac, S, Fleury, X, Merdji, H, Michaut, C, Thais, F, Grandjouan, N, Hall, T, Henry, E, Malka, V and Lafon, J-PJ (2004) Observation of laser driven supercritical radiative shock precursors. Physical Review Letters 92, 225001.
Bret, A, Firpo, M-C and Deutsch, C (2005) Bridging the gap between two stream and filamentation instabilities. Laser and Particle Beams 23, 375383.
Bret, A, Firpo, M-C and Deutsch, C (2006) Between two stream and filamentation instabilities: temperature and collisions effects. Laser and Particle Beams 24, 2733.
Bret, A, Gremillet, L, Bénisti, D and Lefebvre, E (2008) Exact relativistic kinetic theory of an electron-beam–plasma system: hierarchy of the competing modes in the system-parameter space. Physical Review Letters 100, 205008.
Bret, A, Gremillet, L and Dieckmann, ME (2010) Multidimensional electron beam-plasma instabilities in the relativistic regime. Physics of Plasmas 17, 120501.
Bret, A, Stockem, A, Fiúza, F, Pérez Álvaro, E, Ruyer, C, Narayan, R and Silva, LO (2013 a) The formation of a collisionless shock. Laser and Particle Beams 31, 487491.
Bret, A, Stockem, A, Fiuza, F, Ruyer, C, Gremillet, L, Narayan, R and Silva, LO (2013 b) Collisionless shock formation, spontaneous electromagnetic fluctuations, and streaming instabilities. Physics of Plasmas 20, 042102.
Bret, A, Stockem, A, Narayan, R and Silva, LO (2014) Collisionless Weibel shocks: full formation mechanism and timing. Physics of Plasmas 21, 072301.
Dieckmann, ME (2005) Particle simulation of an ultrarelativistic two-stream instability. Physical Review Letters 94, 155001.
Dieckmann, ME and Bret, A (2017) Simulation study of the formation of a non-relativistic pair shock. Journal of Plasma Physics 83, 905830104.
Dieckmann, ME and Bret, A (2018) Electrostatic and magnetic instabilities in the transition layer of a collisionless weakly relativistic pair shock. Monthly Notices of the Royal Astronomical Society 473, 198209.
Faĭnberg, YB, Shapiro, VD and Shevchenko, V (1970) Nonlinear theory of interaction between a monochromatic beam of relativistic electrons and a plasma. Journal of Experimental and Theoretical Physics 30, 528.
Fried, BD (1959) Mechanism for instability of transverse plasma waves. Physics of Fluids 2, 337.
Ichimaru, S (1973) Basic Principles of Plasma Physics. Reading, MA: W. A. Benjamin, Inc.
Jackson, J (1998) Classical Electrodynamics. Hoboken, NJ: Wiley.
Kirk, JG and Duffy, P (1999) Particle acceleration and relativistic shocks. Journal of Physics G: Nuclear and Particle Physics 25, R163.
Landau, L and Lifshitz, E (2013 a) Course of Theoretical Physics, Statistical Physics. Number v. 5. Amsterdam, Netherlands: Elsevier Science.
Landau, L and Lifshitz, E (2013 b) Fluid Mechanics. Number v. 6. Amsterdam, Netherlands: Elsevier Science.
Lemoine, M, Pelletier, G, Gremillet, L and Plotnikov, I (2014) A fast current-driven instability in relativistic collisionless shocks. EPL (Europhysics Letters) 106, 55001.
Marcowith, A, Bret, A, Bykov, A, Dieckman, ME, Drury, L, Lembège, B, Lemoine, M, Morlino, G, Murphy, G, Pelletier, G, Plotnikov, I, Reville, B, Riquelme, M, Sironi, L and Stockem Novo, A (2016) The microphysics of collisionless shock waves. Reports on Progress in Physics 79, 046901.
Nakar, E, Bret, A and Milosavljević, M (2011) Two-stream-like Instability in dilute hot relativistic beams and astrophysical relativistic shocks. Astrophysical Journal 738, 93.
Niemiec, J, Pohl, M, Bret, A and Wieland, V (2012) Nonrelativistic parallel shocks in unmagnetized and weakly magnetized plasmas. Astrophysical Journal 759, 73.
Ruyer, C, Gremillet, L, Bonnaud, G and Riconda, C (2017) A self-consistent analytical model for the upstream magnetic-field and ion-beam properties in Weibel-mediated collisionless shocks. Physics of Plasmas 24, 041409.
Sagdeev, RZ (1966) Cooperative phenomena and shock waves in collisionless plasmas. Reviews of Plasma Physics 4, 23.
Schwartz, SJ, Henley, E, Mitchell, J and Krasnoselskikh, V (2011) Electron temperature gradient scale at collisionless shocks. Physical Review Letters 107, 215002.
Stockem Novo, A, Bret, A, Fonseca, RA and Silva, LO (2015) Shock formation in electron-ion plasmas: mechanism and timing. Astrophysical Journal Letters 803, L29.
Thorne, K and Blandford, R (2017) Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. Princeton, NJ: Princeton University Press.
Yuan, D, Li, Y, Liu, M, Zhong, J, Zhu, B, Li, Y, Wei, H, Han, B, Pei, X, Zhao, J, Li, F, Zhang, Z, Liang, G, Wang, F, Weng, S, Li, Y, Jiang, S, Du, K, Ding, Y, Zhu, B, Zhu, J, Zhao, G and Zhang, J (2017) Formation and evolution of a pair of collisionless shocks in counter-streaming flows. Scientific Reports 7, 42915.
Zel'dovich, I and Raizer, Y (2002) Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover Books on Physics. Mineola, NY: Dover Publications.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed