Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T17:00:06.967Z Has data issue: false hasContentIssue false

Temporal distribution of the electrical energy on an exploding wire

Published online by Cambridge University Press:  18 February 2016

Gonzalo Rodríguez Prieto*
Affiliation:
Universidad de Castilla-La Mancha, E.T.S.I.I. Ciudad Real, Spain
Luis Bilbao
Affiliation:
Instituto de Física del Plasma, UBA-CONICET Buenos Aires, Argentina
Malena Milanese
Affiliation:
CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires Instituto de Física Arroyo Seco - Facultad de Ciencias Exactas, Tandil, Argentina
*
Address correspondence and reprint requests to: Gonzalo Rodríguez Prieto, Universidad de Castilla-La Mancha, E.T.S.I.I. Ciudad Real, Spain. E-mail: gonzalo.rprieto@uclm.es

Abstract

An exploding wire system has been experimentally studied by the observation of its plasma dynamics and the electrical energy delivered by the supporting circuit to the metallic wire. Plasma radial expansion has been obtained from visible light streak images, meanwhile electrical energy transfer dynamics was derived from the analysis of voltage and current traces of the exploding wire circuit. In these measurements, a significant portion of the electrical energy has been transferred to the exploding wire circuit during the plasma expansion, and lower limits for the resistivity during the plasma expansion confirm the existence of a central liquid or solid metallic core in addition to the expanding plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bennett, F.D. (1958). Cylindrical shock waves from exploding wires. Phys. Fluids 1, 347352.CrossRefGoogle Scholar
Bennett, F.D. (1961). Shock waves from exploding wires at low ambient densities. Technical Report 1152, Ballistic Research Laboratories.CrossRefGoogle Scholar
Bennett, F.D. (1969). High temperature exploding wires. Progress in High Temperature Physics and Chemistry, Vol. 2, pp. 161. London: Pergamon Press.Google Scholar
Bibbo, L., Giovambatista, N., Gomez, P., Olivieri, M., Tibaldi, C., Bernal, L., Pouzo, J. & Bilbao, L. (1998). Optical measurements in an exploding wire experiment. Astrophys. Space Sci. 256, 467472.CrossRefGoogle Scholar
Burkhalter, P.G., Oozier, C.M. & Nagel, D.J. (1977). X-ray spectra from exploded-wire plasmas. Phys. Rev. A 15, 700717.CrossRefGoogle Scholar
Chandler, K.M., Hammer, D.A., Sinars, D.B., Pikuz, S.A. & Shelkovenko, T.A. (2002). The relationship between exploding wire expansion rates and wire material properties near the boiling temperatue. IEEE Trans. Plasma Sci. 30, 577587.CrossRefGoogle Scholar
Duselis, P.U. & Kusse, B.R. (2003). Experimental observation of plasma formation and current transfer in fine wire expansion experiments. Phys. Plasmas 10, 565568.CrossRefGoogle Scholar
Efimov, S., Fedotov, A., Gleizer, S., Gurovich, V.Tz., Bazalitski, G. & Krasik, Ya.E. (2008). Characterization of converging shock waves generated by underwater electrical wire array explosion. Phys. Plasmas 15, 112703.CrossRefGoogle Scholar
Esaulov, A.A., Johnson, W.R., Safronova, A.S., Safronova, U.I., Kantsyrev, V.L., Weller, M.E. & Ouart, N.D. (2011). Plasma ionization and resistivity models in application to radiative properties of z-pinches. High Energy Phys. 8, 217223.Google Scholar
Gilburd, L., Efimov, S., Fedotov Gefen, A., Gurovich, V.Tz., Bazalitski, G., Antonov, O. & Krasik, Ya.E. (2012). Modified wire array underwater electrical explosion. Laser Part. Beams 30, 215224.CrossRefGoogle Scholar
Jennings, C.A., Cuneo, M.E., Waisman, E.M., Sinars, D.B., Ampleford, D.J., Bennett, G.R., Stygar, W.A. & Chittenden, J.P. (2010). Simulations of the implosion and stagnation of compact wire arrays. Phys. Plasmas 17, 092703.CrossRefGoogle Scholar
Knudson, M.D., Desjarlais, M.P., Becker, A., Lemke, R.W., Cochrane, K.R., Savage, M.E., Bliss, D.E., Mattsson, T.R. & Redmer, R. (2015). Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 14551460.CrossRefGoogle ScholarPubMed
Kotov, Yu.A. (2003). Electric explosion of wires as a method for preparation of nanopowders. J. Nanopart. Res. 5, 539550.CrossRefGoogle Scholar
Krasik, Ya.E., Grinenko, A., Sayapin, A., Efimov, S., Fedotov, A., Gurovich, V.Z. & Oreshkin, V.I. (2008). Underwater electrical wire explosion and its applications. IEEE Trans. Plasma Sci. 36, 423434.CrossRefGoogle Scholar
Krasik, Ya.E., Grinenko, A., Sayapin, A. & Gurovich, V.Tz. (2006). Generation of sub-Mbar pressure by converging shock waves produced by the underwater electrical explosion of a wire array. Phys. Rev. E 73, 057301.CrossRefGoogle ScholarPubMed
Liverts, M., Ram, O., Sadot, O., Apazidis, N. & Ben-Dor, G. (2015). Mitigation of exploding-wire-generated blast-waves by aqueous foam. Phys. Fluids 27, 076103.CrossRefGoogle Scholar
Nairne, E. (1780). An account of the effect of electricity in shortening wires. Philos. Trans. R. Soc. London 70, 334337. URL http://www.jstor.org/stable/106384Google Scholar
Sinton, R.P.W., Hammond, C., Enright, W. & Bodger, P. (2009). Generating high voltages with a plasma coil transformer. In Proceedings of TechCon 2009, 211–219.Google Scholar
Sarkisov, G.S., Struve, K.W. & McDaniel, D.H. (2005). Effect of deposited energy on the structure of an exploding tungsten wire core in a vacuum. Phys. Plasmas 12, 052702.CrossRefGoogle Scholar
Sheftman, D. & Krasik, Ya.E. (2010). Investigation of electrical conductivity and equations of state of non-ideal plasma through underwater electrical wire explosion. Phys. Plasmas 17, 112702.CrossRefGoogle Scholar
Sinars, D.B., Cuneo, M.E., Yu, E.P., Lebedev, S.V., Cochrane, K.R., Jones, B., MacFarlane, J.J., Mehlhorn, T.A., Porter, J.L. & Wenger, D.F. (2006). Measurements and simulations of the ablation stage of wire arrays with different initial wire sizes. Phys. Plasmas 13, 042704.CrossRefGoogle Scholar
Sinars, D.B., Hu, M., Chandler, K.M., Shelkovenko, T.A., Pikuz, S.A., Greenly, J.B., Hammer, D.H. & Kuss, B.R. (2001). Experiments measuring the initial energy deposition, expansion rates and morphology of exploding wires with about 1 ka ~ Owire. Phys. Plasmas 8, 216230.CrossRefGoogle Scholar
Sindhu, T.K., Sarathi, R. & Chakravarthy, S.R. (2008). Understanding nanoparticle formation by a wire explosion process through experimental and modelling studies. Nanotechnology 19, 025703.CrossRefGoogle ScholarPubMed
Smith, D., Enright, W. & Bodger, P.S. (2007). A test circuit for long distance directional plasma discharge using the exploding wire technique. In XVth International Symposium on High Voltage Engineering, Ljubljana, Slovenia, pp. T3489.Google Scholar
Stephens, J. & Neuber, A. (2012). Exploding-wire experiments and theory for metal conductivity evaluation in the sub-eV regime. Phys. Rev. E 86, 066409.CrossRefGoogle ScholarPubMed
Ter-Oganesyan, A.E., Tkachenko, S.I., Romanova, V.M., Mingaleev, A.R., Shelkovenko, T.A. & Pikuz, S.A. (2005). Nanosecond electric explosion of a tungsten wire in different media. Plasma Phys. Rep. 31, 916926.CrossRefGoogle Scholar
Vijayan, T. & Rohatgi, V.K. (1985). Characteristics of exploding-wire plasmas. IEEE Trans. Plasma Sci. PS-13, 197201.CrossRefGoogle Scholar