Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-15T13:06:48.993Z Has data issue: false hasContentIssue false

Tc-99m production with ultrashort intense laser pulses

Published online by Cambridge University Press:  09 October 2014

V. Yu. Bychenkov
Affiliation:
P. N. Lebedev Physics Institute, Russian Academy of Science, Moscow, Russia Centre for Fundamental and Applied Research, VNIIA, ROSATOM, Moscow, Russia
A. V. Brantov*
Affiliation:
P. N. Lebedev Physics Institute, Russian Academy of Science, Moscow, Russia Centre for Fundamental and Applied Research, VNIIA, ROSATOM, Moscow, Russia
G. Mourou
Affiliation:
DGAR-IZEST, Ecole Polytechnique, Palaiseau Cedex, France
*
Address correspondence and reprint requests to: A. V. Brantov, P. N. Lebedev Physics Institute, Russian Academy of Science, Leninskii Prospect 53, Moscow 119991, Russia. E-mail: brantov@sci.lebedev.ru

Abstract

The interaction of a relativistic short laser pulse with thin foil is studied using 3D PIC simulations in the context of optimized high-energy proton generation for nuclear medicine and pharmacy. As an example, we analyze the Tc-99m yield from the Mo-100(p,2n)Tc-99m reaction with the International Coherent Amplification Network (ICAN) concept defined by a 10 J pulse energy and 10 kHz repetition rate. Based on 3D PIC simulation it has been demonstrated that normally incident 100 fs laser pulse with maximum intensity of 5 × 1021 W/cm2 is able to generate 1011 protons with energy upto 45 MeV from thin semi-transparent CH2 target. Such laser-produced proton beam after 6 hours bombardment of the thick metallic Mo-100 target gives around 300 Gbq activities of Tc-99m isotope. This gives reason to believe that laser technology for producing technetium is possible with ICAN concept to replace the traditional scheme through the fission of weapons-grade uranium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERNCES

Beaver, J.E. & Hupf, H.B. (1971). Production of 99mTc on a medical cyclotron: A feasibility study. J. Nucl. Med. 12, 739741.Google Scholar
Benard, F., Buckley, K.R., Ruth, T.J., Zeisler, S.K., Klug, J., Hanemaayer, V., Vuckovic, M., Hou, X., Celler, A., Appiah, J.-P., Valliant, J., Kovacs, M.S. & Schaffer, P. (2014). Implementation of multi-curie production of 99mTc by conventional medical cyclotrons. Nucl. Med. 55, 10171022.Google Scholar
Berger, M.J., Coursey, J.S., Zucker, M.A. & Chan, J. (2014). Stopping-power and range tables for electrons, protons, and helium ions. http://www.nist.gov/pml/data/star.Google Scholar
Brantov, A.V. & Bychenkov, V.Yu. (2013). Laser-triggered proton acceleration from micro-structured thin targets. Contrib. Plasma Phys. 53, 731735.Google Scholar
Busold, S., Schumacher, D., Deppert, O., Brabetz, C., Frydrych, S., Kroll, F., Joost, M., Al-Omari, H., Blazevic, A., Zielbauer, B., Hofmann, I., Bagnoud, V., Cowan, T.E. & Roth, M. (2013). Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source. Phys. Rev. ST Accel. Beams 16, 101302.Google Scholar
Bychenkov, V.Yu., Tikhonchuk, V.T. & Tolokonnikov, S.V. (1999). Nuclear reactions triggered by laser-accelerated high-energy ions. JETP 88, 11371142.Google Scholar
Canada National Progress Report to the 2014 Nuclear Security Summit, 24-25 March2014, Netherlands, https://www.nss2014.com/sites/default/files/documents/canada.pdf.Google Scholar
Celler, A., Hou, X., Benard, F. & Ruth, T. (2011). Theoretical modeling of yields for proton-induced reactions on natural and enriched molybdenum targets. Phys. Med. Bio. 56, 54695484.Google Scholar
Clarke, R., Dorkings, S., Neely, D. & Musgrave, I. (2014). The production of patient dose level 99mTc medical radioisotope using laser-driven proton beams. Proc. SPIE 8779, 87791C/1–7.Google Scholar
Cowan, T.E., Fuchs, J., Ruh, H., Kemp, A., Audebert, P., Roth, M., Stephens, V, Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.-C., Geissel, M., Hegelich, B.M., Kaae, J., Karsch, S., LeSage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pepin, H. & Renard-LeGalloudec, N. (2004). Ultra low emittance, multi MeV proton beams from a laser virtual cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.Google Scholar
Crowley, K., Ruth, T.J., Allen, C.W. & Vandegrift, G. (2013). Non-HEU production technologies for Molybdenum-99 and Technetium-99m. Report IAEA NF-T-5.4. International Atomic Energy Agency, Vienna, 1–75.Google Scholar
Esirkepov, T., Yamagiwa, M. & Tajima, T. (2006). Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys.Rev. Lett. 96, 105001/1-4.Google Scholar
Esposito, J., Vecchi, G., Pupillo, G., Taibi, A., Uccelli, L., Boschi, A. & Gambaccini, M. (2013). Evaluation of 99Mo and 99mTc productions based on a high-performance cyclotron. Science and Technology of Nuclear Installations 972381/1–14.Google Scholar
Gagnon, K., Benardb, F., Kovacs, M., Ruth, T.J., Schaffer, P., Wilson, J.S. & McQuarrie, S.A. (2011). Cyclotron production of 99mTc: Experimental measurement of the 100Mo(p,x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV. Nucl. Med. Bio. 38, 907916.Google Scholar
Henig, A., Steinke, S., Schnurer, M., Sokollik, T., Horlein, R., Kiefer, D., Jung, D., Schreiber, J., Hegelich, B.M., Yan, X.Q., Meyer-ter-Vehn, J., Tajima, T., Nickles, P.V., Sandner, W. & Habs, D. (2009). Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. Phys. Rev. Lett. 103, 245003.CrossRefGoogle ScholarPubMed
Hou, X., Celler, A., Grimes, J., Benard, F. & Ruth, T. (2012). Theoretical dosimetry estimations for radioisotopes produced by proton-induced reactions on natural and enriched molybdenum targets. Phys. Med. Biol. 57, 14991515.Google Scholar
Lebeda, O., van Lier, E.J., Stursa, J., Ralis, J. & Zyuzin, A. (2012). Assessment of radionuclidic impurities in cyclotron produced 99mTc. Nucl. Med. Bio. 39, 12861291.Google Scholar
Ledingham, K.W.D. & Norreys, P.A. (1999). Nuclear physics merely using a light source. Contemp. Phys. 40, 367383.Google Scholar
Ledingham, K.W.D., McKenna, P., McCanny, T., Shimizu, S., Yang, J.M., Robson, L., Zweit, J., Gillies, J.M., Bailey, J., Chimon, G.N., Clarke, R.J., Neely, D., Norreys, P.A., Collier, J.L., Singhal, R.P., Wei, M.S., Mangles, S.P.D., Nilson, P., Krushelnick, K. & Zepf, M. (2004). High power laser production of short-lived isotopes for positron emission tomography. J. Phys. D 37, 23412345.Google Scholar
Liao, K.-H., Mordovanakis, A.G., Hou, B., Chang, G., Rever, M., Mourou, G., Nees, J. & Galvanauskas, A. (2007). Generation of hard X-rays using an ultrafast fiber laser system. Opt. Exp. 15, 13942.Google Scholar
Mourou, G., Brocklesby, B., Tajima, T. & Limpert, J. (2013). The future is fibre accelerators. Nat. Photon. 7, 258261.Google Scholar
Nemoto, K., Maksimchuk, A., Banerjee, S., Flippo, K., Mourou, G., Umstadter, D. & Bychenkov, V.Yu. (2001). Laser triggered ion acceleration and table top isotope production. Appl. Phys. Lett. 78, 595597.Google Scholar
Nunan, T. (2010). A review of the supply of Molybdenum-99, the impact of recent shortages and the implications for nuclear medicine services in the UK. Administration of Radioactive Substances Advisory Committee, 1–85.Google Scholar
Patel, P.K., Mackinnon, A.J., Key, M.H., Cowan, T.E., Foord, M.E., Allen, M., Price, D.F., Ruhl, H., Springer, P.T. & Stephens, R. (2003). Isochoric heating of solid- density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.Google Scholar
Peykov, P. & Cameron, R. (2014). The supply of medical radioisotopes. Medical isotope supply in the future: Production capacity and demand, forecast for the 99Mo/99mTc market 2015–2020. NEA/SEN/HLGMR 2, 125.Google Scholar
Pillai, M.R.A., Dash, A. & Knapp, F.F.R. (2013). Sustained availability of 99mTc: Possible paths forward. J. Nucl. Med. 54, 313323.Google Scholar
Pretzler, G., Saemann, A., Eidmann, K., Habs, D., Meyer-ter-Vehn, J., Pukhov, A., Rudolph, D., Schatz, T., Schramm, U., Thirolf, P., Tsakiris, G.D. & Witte, K.J. (1998). Deuterium fusion in the focus of a 200-mJ femtosecond laser. Phys. Rev. E 58, 11651168.Google Scholar
Qaim, S.M., Sudar, S., Scholten, B., Koning, A.J. & Coenen, H.H. (2014). Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: Estimation of long-lived Tc-impurity and its implication on the specifc activity of cyclotron-produced 99mTc. Appl. Radiat. Isotopes 85, 101113.Google Scholar
Robinson, A.P.L., Bell, A.R. & Kingham, R.J. (2006). Effect of target composition on proton energy spectra in ultraintense laser-solid interactions. Phys. Rev. Lett. 96, 035005.Google Scholar
Romanov, D.V., Bychenkov, V.Yu., Rozmus, W., Capjack, C.E. & Fedosejevs, R. (2004). 3D non-linear evolution of the Weibel unstable plasma to a self-organized state. Phys. Rev. Lett. 93, 215004/1-4.Google Scholar
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C.E., Hegelich, B.M., Johnson, R.P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J.L., Wagner, F., Wender, S.A., Wilde, C.H. & Wurden, G.A. (2013). Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802/1-4.Google Scholar
Storm, M., Jiang, S., Wertepny, D., Orban, C., Morrison, J., Willis, C., McCary, E., Belancourt, P., Snyder, J., Chowdhury, E., Bang, W., Gaul, E., Dyer, G., Ditmire, T., Freeman, R.R. & Akli, K. (2013). Fast neutron production from lithium converters and laser driven protons. Phys. Plasmas 20, 053106.Google Scholar
Van Noorden, R. (2013). The medical testing crisis. Nature 504, 202.Google Scholar
Willingale, L., Petrov, G.M., Maksimchuk, A., Davis, J., Freeman, R.R., Joglekar, A.S., Matsuoka, T., Murphy, C.D., Ovchinnikov, V.M., Thomas, A.G.R., Van Woerkom, L. & Krushelnick, K. (2011). Comparison of bulk and pitcher-catcher targets for laser-driven neutron production. Phys. Plasmas 18, 083106.Google Scholar
Ziegler, J.F. (2010). SRIM, particle interactions with matter. http://www.srim.org.Google Scholar