Skip to main content Accessibility help
×
Home

Target technology development for the research of high energy density physics and inertial fusion at the RFNC–VNIIEF

Abstract

Results in some directions of the target technology for research on high energy density and laser fusion at the Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics for the last three years are presented. The results of development of optical and X-ray methods of characterization and manufacturing techniques of targets for studying the equation-of-state at high pressures and the condensed rare gas targets for the influence of pulse-repeated laser irradiation are given.

Copyright

Corresponding author

Address correspondence and reprint requests to: V.M. Izgorodin, The Russian Federal Nuclear Centre–All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF), 607190 Sarov, Mira Street 37, Nizhniy Novgorod region, Russia. E-mail: izgorodin@otd13.vniief.ru

References

Hide All
Aleksandrova, I.V., Belolipeskiy, A.A., Koresheva, E.R. & Tolokonnikov, S.M. (2008). Survivability of fuel laers with a different structure under conditions of the environmental effects: Physical concepts and modeling results. Laser Part. Beams 26, 643648.
Altshul, A.D., Zhivotovsky, L.S. & Ivanov, L.P. (1987). Hydraulics and Aerodynamics. Moscow: Stroyizdat.
Andramanova, Yu.V., Veselov, A.V., Zhidkov, N.V., Ivanin, I.A., Ignat'ev, Yu.V., Izgorodin, V.M., Kirillov, G.A., Komleva, G.V., Makarov, M.Yu., Medvedev, E.F., Moroovov, A.P., Nikolaev, G.P., Pinegin, A.V., Romaev, V.N., Solomatina, E.Yu., Tatsenko, M.Yu., Tenyaev, B.N., Cherkesova, I.N. & Yukhimchuk, A.A. (1999). The technology of indirectly irradiated targets for inertial fusion research at the Russian Federal Nuclear Center-VNIIEF. Proc. First Inter. Conf. Inertial Fusion Sciences and Applications, pp. 891896. Paris: Elsevier.
Andreev, N.F., Bespalov, V.I., Bredikhin, V.I., Garanin, S.G., Ginsburg, V.N., Dvorkin, K.L., Katin, V.E., Korytin, A.I., Lozhkarev, V.V., Palashov, O.V., Rukavishnikov, N.N., Sergeev, A.M., Sukharev, S.A., Freidman, G.I., Khazanov, E.A. & Yakovlev, I.V. (2004). The new scheme of petawatt laser on the basis of non-degenerate parametrical amplification chirped impulses in crystals. Rus. Phys. JETP Lett. 79, 178182.
Annenkov, V.I., Bagretsov, V.A., Bezuglov, V.G., Vinogradskii, L.M., Gaidash, V.A., Galakhov, I.V., Gasheev, A.S., Guzov, I.P., Zadorozhnyi, V.I., Eroshenko, V.A., Il'in, A.Yu., Kargin, V.A., Kirillov, G.A., Kochemasov, G.G., Krotov, V.A., Kuz'michev, Yu.P., Lapin, S.G., L'vov, L.V., Mochalov, M.R., Murugov, V.M., Osin, V.A., Pankratov, V.I., Pegoev, I.N., Punin, V.T., Ryadov, A.V., Senik, A.V., Sobolev, S.K., Khudikov, N.M., Khrustalev, V.A., Chebotar', V.S., Cherkesov, N.A. & Shemyakin, V.I. (1991). A pulsed “Iskra-5” laser with the power of 120 TW. Sov. Quan. Electron 18, 536537.
Bethe, Y.A. & Ashkin, J. (1953). Passage of radiation through substance. In Experimental Nuclear Physics (Segre, E., Eds.), Vol. 1, pp. 143215. New York: xxxx.
Beznasyuk, N.N., Galakhov, I.V., Garanin, S.G., Grigorovich, S.G., Eroshenko, V.A., Il'kaev, R.I., Kirillov, G.A., Kochemasov, , Murugov, V.M., Rukavishnikov, N.N. & Sukharev, S.A. (2002). High-power neodimium phosphate glass laser facility “Luch” – prototype of a module of the “Iskra-6” facility. Proc. Russian Federal Nuclear Center-VNIIEF 3, 232247.
Borisenko, N.G., Bugrov, A.E., Burdonskiy, I.N., Fasakhov, I.K., Gavrilov, V.V., Goltsov, A.Y., Gromov, A.I., Khalenkov, A.M., Kovalskii, N.G., Merkuliev, Y.A., Petryakov, V.M., Putilin, M.V., Yankovskii, G.M. & Zhuzhukalo, E.V. (2008). Physical processes in laser interaction with porous low-density materials. Laser Part. Beams 26, 537543.
Chatain, D., Perin, J.P., Bonnay, P., Bouleau, E., Chichoux, M., Communal, D., Manzagol, J., Viargues, F., Brisset, D., Lamaison, V. & Paquignon, G. (2008). Cryogenic systems for inertial fusion energy. Laser Part. Beams 26, 517523.
Cook, R. (1994). Production of hollow microspheres for inertial confinement fusion experiments. Proc MRS symp. 372, 101112.
Cook, R.C., Kozioziemski, B.J., Nikroo, A., Wilkens, H.L., Bhandarkar, S., Forsman, A.C., Haan, S.W., Hoppe, M.L., Huang, H., Mapoles, E., Moody, J.D., Sater, JD., Seugling, R.M., Stephens, R.B., Takagi, M. & Xu, H.W. (2008). National Ignition Facility target design and fabrication. Laser Part. Beams 26, 479487.
Cormer, S.B. (1980). The photo dissociation lasers for dirigible fusion. Izvestia AN SSSR, ser. Phys. 44, 20022017.
de Groot, Peter & Colonna de Lega, X., Kramer, J. & Turzhitsky, M. (2002). Determination of fringe order in white-light interference microscopy. Appl. Opt. 41, 4571.
de Groot, Peter & Colonna de Lega, X. (2004). Signal modeling for low-coherence height-scanning interference microscopy. Appl. Opt. 43, 4821.
Deck, L. & de Groot, Peter (1994). High-speed noncontact profiler based on scanning white-light interferometry. Appl. Opt. 33, 7334.
Diefendorff, K. (2000). Extreme Lithography. Microdesign Resources Microprocessor Report, June 19.
Fernandez, J.C., Hegelich, B.M., Cobble, J.A., Flippo, K.A., Letzring, S.A., Johnson, R.P., Gautier, D.C., Shimada, T., Kyrala, G.A., Wang, Y.Q., Wetteland, C.J. & Schreiber, J. (2005). Laser-ablation treatment of short-pulse laser targets: Toward an experimental program on energetic-ion interactions with dense plasmas. Laser Part. Beams 23, 267273.
Freischlad, K. & Koliopoulos, C.L. (1990). Fourier description of digital phase-measuring interferometry. J. Opt. Soc. Am. A 7, 542551.
Frenkel, Ja.I. (1975). The Kinetic Theory of Liquids. Leningrad: Nauka.
Gaidash, V.A., Kirillov, G.A., Cormer, S.B., Lapin, S.G., Shemyakin, V.I. & Shurygin, V.K. (1974). The C3F7J laser facility with energy of radiation of 20 J and impulse duration of 3 ns. Sov. Phys. JETP Lett. 20, 243246.
Galakhov, I.V., Garanin, S.G., Eroshenko, V.A., Kirillov, G.A., Kochemasov, G.G., Murugov, V.M., Rukavishnikov, N.N. & Sukharev, S.A. (1999). Concept of the Iskra-6 Nd-laser facility. Fusion Engin. Des. 44, 5156.
Gunn, G.J., Yakovlev, V.I., Prudkovskij, B.A., Galkin, A.M., Ryzhov, A.F., Golovin, M.F. & Brunilin, A.I. (1974). Pressing of Aluminum Alloys (Mathematical Modeling and Optimization). Moscow: Metallurgy.
Hansson, , Bjorn, A.M., Rymell, L., Berglund, M., Hemberg, O., Janin, E., Thoresen, J., Mosesson, S., Wallin, J. & Herz, H. (2002). Status of the liquid-xenon-jet laser-plasma source for EUV lithography. Proc. SPIE. 4688, 102.
Huang, T. & Parrich, W. (1986). X-ray fluorescence analysis of multplei–Layer thin films. Adv. X-ray anal. 29, 395402.
Ignat'ev, Yu.V., Vasin, M.G., Veselov, A.V., Izgorodin, V.M., Lakhtikov, A.E. & Moroovov, A.P. (2002). Measurement of argon in the laser fusion targets. Proc. SPIE 5228, 651655.
Il'kaev, R.I. & Garanin, S.G. (2006). Investigation of the fusion problem on powerful laser installations. Vestnik RAN 76, 503513.
Koenig, M., Bondenne, J.M., Batini, D., Benuzzi, A., Bossi, S., Temporal, M. & Atzeni, S. (1995). Relative consistency of equations of state by laser driven shock waves. Phys. Rev. Lett. 74, 2260.
Koresheva, E.R., Aleksandrova, I.V., Koshelev, E.L., Nikitenko, A.I., Timasheva, T.P., Tolokonnikov, S.M., Belolipetskiy, A.A., Kapralov, V.G., Sergeev, V.T., Blazevic, A., Weyrich, K., Varentsov, D., Tahir, N.A., Udrea, S. & Hoffmann, D.H.H. (2009). A study on fabrication, manipulation and survival of cryogenic targets required for the experiments at the Facility for Antiproton and Ion Research: FAIR. Laser Part. Beams 27, 255272.
Krasnikov, V.F. (1976). Technology of miniature manufactures. Moscow: Mashinostroenie.
Krause, M.O. (1979). Atomic radiative and radiationless yields for K and L shells. J. Phys. Chem. Ref. Data 8, 307.
Laguiton, D. & Parrich, W. (1977). Simultaneous determination of cmposition and mass thickness of thin films by quantitative X-ray fluorescence analysis. Anal. Chem. 49, 11521156.
Mantler, M. (1986). X-ray fluorescence analysis of multiple–layer films. Anal. Chim. Acta. 188, 2535.
Mantler, M. (1987). Advances in fundamental parameter methods for quantitative XRFA. Advan. X-Ray Anal. 30, 97104.
Matsuyama, M., Murai, T. & Watanabe, K. (2002). Quantitative measurement of surface tritium by (-ray-induced X-ray spectrometry. Fusion Sci. Techn. 41, 505.
Meyertervehn, J., Witkowski, S., Bock, R., Hoffmann, D.H.H., Hofmann, I., Muller, R.W., Arnold, R. & Mulser, P. (1990). Accelerator and target studies for heavy-ion fusion at the gesellschaft-fur-schwerionenforschung. Phys. Fluids B 2, 13131317.
Mukhin, K.N. (1974). Experimental Nuclear Physicists. Moscow: Aтомиздат.
Nazarov, V.V. (1991). Simultaneous definition of thickness and element structure of a material by means of a X-ray fluorescent method. Zavodskaya Lab. 57, 2729.
Nemets, О.F. & Hofman, J.V. (1975). Manual on Nuclear Physics. Kiev: Naukova Dumka.
Pavlova, L.A., Belozerov, O.Yu., Paradina, L.F. & Suvorov, L.F. (2000). The X-ray Electron Probe Analysis of Microobjects. Novosibirsk: Nauka.
Pratt, R.H., Tseng, H.K., Lee, C.M. & Lynn, K. (1977). Bremsstrahlung energy spectra from electrons kinetic energy 1 keV ≤ T1 ≥ 2000 keV incident on neutral atoms 2 ≤ Z ≥ 92. Atomic Data Nuc. Data Tables 20, 175.
Reed, S.J.B. (1975). Electron Microprobe Analysis. Cambridge: Cambridge University Press.
Samoilovich, G.S. (1990). Hydro-Gasdinamics. Moscow: Mashinostroenie.
Shmayda, C.R., Shmayda, W.T. & Kherani, N.P. (2002). Monitoring tritium activity on surfaces: Recent development. Fusion Sci. Techn. 41, 500.
Sinclair, M.B., de Boer, M.P. & Corwin, A.D. (2005). Long-working-distance incoherent-light interference microscope. Appl. Opt. 44, 7714.
Tahir, N.A., Kim, V.V., Matvechev, A.V., Ostrik, A.V., Shutov, A.V., Lomonosov, I.V., Piriz, A.R., Cela, J.J.L. & Hoffmann, D.H.H. (2008). High energy density and beam induced stress related issues in solid graphite Super-FRS fast extraction targets. Laser Part. Beams 26, 273286.
Vasin, M.G., Ignat'ev, Yu.V., Lachtikov, A.E., Morovov, A.P., Nazarov, V.V. & Trahtenberg, L.I. (2007). X-ray fluorescence analysis with sample excitation using radiation from secondary target. X-ray Spectro. 36, 270274.
Veselov, A.V., Drozhin, V.S., Druzhinin, A.A., Izgorodin, V.M., Ilyushechkin, B.F., Kirillov, G.A., Komleva, G.V., Korochkin, A.M., Medvedev, E.F., Nikolaev, G.P., Pikulin, I.V., Pinegin, A.V., Punin, V.T., Romaev, V.N., Sumatokhin, V.L., Tarasova, N.N., Tachyaev, G.V. & Cherkesova, I.N. (1995). ICF target technology at the Russian Federal Nuclear Center. Fusion Techn. 28, 18381843.
Veselov, A.V., Dudin, A.V., Komleva, G.V. & Pukhov, Y.D. (1981). The interferometric method of measurement of gas quantity in fusion targets. Sov. Quan. Electr. 8, 11111113.
Weinstein, B.W. & Weir, J.T. (1980). Measurement of tracer elements in inertial fusion target fuel. J. Appl. Phys. 51, 56045609.
Yang, H., Nagai, K., Nakai, N. & Norimatsu, T. (2008). Thin shell aerogel fabrication for FIREX-I targets using high viscosity (phloroglucinol carboxylic acid)/formaldehyde solution. Laser Part. Beams 26, 449453.

Keywords

Target technology development for the research of high energy density physics and inertial fusion at the RFNC–VNIIEF

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed