Skip to main content Accessibility help

Surface plasma waves induced electron acceleration in a static magnetic field

  • D. Goel (a1), P. Chauhan (a1), A. Varshney (a1) and V. Sajal (a1)


The acceleration of an electron beam by surface plasma waves (SPW), in the presence of external magnetic field parallel to surface and perpendicular to direction of propagation of SPW has been studied. This wave propagating along the $\hat z$ -axis is excited using Kretschmann geometry, having maximum amplitude at the metal–vacuum interface. Equations of motion have been solved for electron energy and trajectory. The electron gains and retains energy in the form of cyclotron oscillations due to the combined effect of the static magnetic field and SPW field. The energy gained by the beam increases with the strength of magnetic field and laser intensity. In the present scheme, electron beams can achieve ~15 KeV energy for the SPW amplitude A 1 = 1.6 × 1011 V/m, plasma frequency ωp = 1.3 × 1016 rad/s and cyclotron frequency ωcp = 0.003.


Corresponding author

Address correspondence and reprint requests to: Department of Physics and Material Science & Engineering, Jaypee Institute of Information Technology, Noida-201307, Uttar Pradesh, India. E-mail:


Hide All
Bigongiari, A., Raynaud, M. & Riconda, C. (2011 a). Steady magnetic-field generation via surface-plasma-wave excitation. Phys. Rev. E 84, 015402(R).
Bigongiari, A., Raynaud, M., Riconda, C., Heron, A. & Macchi, A. (2011 b). Efficient laser-overdense plasma coupling via surface plasma waves and steady magnetic field generation. Phys. Plasma 18, 102701.
Brion, J.J., Wallis, R.F., Hartstein, A. & Burstein, E. (1974). Theory of surface magnetoplasmons in semiconductors. Phys. Rev. Lett. 28, 22.
Deepika, G, Chauhan, P., Varshney, A., Singh, D.B. and Sajal, V. (2015). Enhanced absorption of surface plasma wave by metal nano-particles in the presence of external magnetic field. J. Phys. D: Appl. Phys. 48, 345103.
Dieckmann, M.E., Ljung, P., Ynnerman, A. & Mcclements, K.G. (2002). Three-dimensional visualization of electron acceleration in magnetized plasma. IEEE Trans. Plasma Sci. 30, 20.
Esirkepov, T., Bulanov, S.V., Yamagiwa, M.V. & Tajima, T. (2006). Electron, positron, and photon wakefield acceleration: trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 96, 014803.
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. & Malka, V. (2006). Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.
Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 38541.
Gupta, D.N., Gopal, K., Nam, I.H., Kulagin, V.V. & Suk, H. (2014). Laser wakefield acceleration of electrons from a density-modulated plasma. Laser Part. Beams 32, 449454.
Gupta, D.N. & Ryu, C.M. (2005). Electron acceleration by a circularly polarized laser pulse in the presence of an obliquely incident magnetic field in vacuum. Phys. Plasmas 12, 053103.
Gupta, D.N. & Suk, H. (2007). Energetic electron beam generation by laser-plasma interaction and its application for neutron production. J. Appl. Phys. 101, 114908.
Hoffmann, D.H.H., Blazevic, A., Rosmej, O.N., Spiller, P., Tahir, N.A., Weyrich, K., Dafni, T., Kuster, M., Ni, P., Roth, M., Udrea, S. & Varentsov, D. (2007). Particle accelerator physics and technology for high energy density physics research. Eur. Phys. J: D 44, 293300.
Hur, M.S., Gupta, D.N. & Suk, H. (2008). Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration. Phys. Lett. A 372, 26842687.
Irvine, S.E., Dechant, A. & Elezzabi, A.Y. (2004). Generation of 0.4 keV femtosecond electron pluses using impulsively excited surface plasmons. Phys. Rev. Lett. 93, 184801.
Irvine, S.E. & Elezzabi, A.Y. (2005). Ponderomotive electron acceleration using surface plasmon waves excited with femtosecond laser pulses. Appl. Phy. Lett. 86, 264102.
Kretschmann, E. & Raether, H. (1968). Radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 23A, 2135.
Lagutin, A., Rosseel, K., Herlach, F., Vanacken, J. & Bruynseraede, Y. (2003). Development of reliable 70 T pulsed magnets. Measur. Sci. Technol. 14, 2144.
Liu, C.S., Kumar, G., Singh, D.B. & Tripathi, V.K. (2007). Electron acceleration by surface plasma waves in double metal surface structure. J. Appl. Phys. 102, 113301.
Prasad, P., Singh, R. & Tripathi, V.K. (2009). Effect of an axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electrons. Laser Part. Beams 27, 459464.
Raether, H. (1988). Surface Plasmons on Smooth and Rouge Surfaces and on Gratings. New York: Springer-Verlag.
Singh, K.P. (2004). Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum. Phy. Rev. E 69, 056410.
Vieira, J., Martins, S.F., Pathak, V.B., Fonseca, R.A., Mori, W.B. & Silva, L.O. (2011). Magnetic control of particle injection in plasma based accelerators, Phys. Rev. Lett. 106, 225001.
Zawadzka, J., Jaroszynski, D., Carey, J.J. & Wynne, K. (2001). Evanescent-wave acceleration of ultrashort electron pluses. Appl. Phys. Lett. 79, 21302132.
Zherlitsyn, S., Herrmannsdorfer, T., Wustmann, B. & Wosnitza, J. (2010). Design and performance of non-destructive pulsed magnets at the dresden high magnetic field laboratory. IEEE Trans. Appl. Superconductivity 20, 672675.


Surface plasma waves induced electron acceleration in a static magnetic field

  • D. Goel (a1), P. Chauhan (a1), A. Varshney (a1) and V. Sajal (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed