Skip to main content Accessibility help

Suppression of stimulated rotational Raman scattering over long air paths via controlling the polarization state

  • B. Feng (a1) (a2), X.M. Fan (a1) (a3), Z.W. Lu (a1), D.Y. Lin (a1), F. Yang (a1) and Y.L. Wang (a1)...


Stimulated rotational Raman scattering (SRRS) limits the effective transmission distances of the high-energy and high-power laser pulses in laser–fusion systems and other applications. A simple and practical method of suppressing SRRS process by controlling the polarization direction of Stokes light is proposed. For a narrowband, linearly polarized, flat-topped laser pulse of 351 nm with intensity of 2 GW/cm2 and width of 3 ns, the SRRS threshold distance in air is lengthened to 30.0 m from 16.2 m easily using the method. Simulation results demonstrate that the method is also applicable for broadband laser.


Corresponding author

Address correspondence and reprint requests to: Z.W. Lu and Y.L. Wang, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail:,


Hide All
Dixit, S.N. (1992). Numerical modeling of the suppression of stimulated Brillouin scattering due to finite laser bandwidth. SPIE 1626, 254265.
Fan, X.M., Lu, Z.W., Lin, D.Y., Yang, F., Liu, Y., Dong, Y.K., Zhu, C.Y. & Hasi, W.L.J. (2013). Numerical investigation of the effects of smoothing by spectral dispersion on stimulated rotational Raman scattering. Laser Part. Beams 31, 171175.
Henesian, M.A., Swift, C.D. & Murray, J.R. (1985). Stimulated rotational Raman scattering in nitrogen in long air paths. Opt. Lett. 10, 565567.
Hunt, J.T. (2000). National Ignition Facility Performance Review 1999.
Kurnit, N.A., Shimada, T., Sorem, M.S., Taylor, A.J., Rodriguez, G., Clement, T.S., Fearn, H., James, D.F. & Milonni, P.W. (1997). Measurement and control of optical nonlinearities of importance to glass laser fusion systems. SPIE 3047, 387395.
Mack, M.E., Carman, R.L., Reintjes, J. & Bloembergen, N. (1970). Transient stimulated rotational and vibrational Raman scattering in gases. Appl. Phys. Lett. 16, 209211.
Leung, K., Oron, M., Klimek, D., Holmes, R. & Flusberg, A. (1988). Observation of parametric gain suppression in rotational Raman transitions of N2 and H2. Opt. Lett. 13, 3335.
Skeldon, M.D. & Bahr, R. (1991). Stimulated rotational Raman scattering in air with a high-power broadband laser. Opt. Lett. 16, 366368.
Wang, J., Zhang, X.M., Han, W., Li, F.Q., Zhou, L.D., Feng, B. & Xiang, Y. (2011). Experimental observation of near-field deterioration induced by stimulated rotational Raman scattering in long air paths. Chin. Phys. Lett. 28, 084211. 1–4.
Wegner, P., Auerbach, J., Biesiada, T., Dixit, S., Lawson, J., Menapace, J., Parham, T., Swift, D., Whitman, P. & Williams, W. (2004). NIF final optics system: Frequency conversion and beam conditioning. Proc. SPIE 5341, 180189.
Ying, L., Kessler, T.J. & Lawrence, G.N. (1994). Raman scattering in air: Four-dimensional analysis. Appl. Opt. 33, 47814791.


Related content

Powered by UNSILO

Suppression of stimulated rotational Raman scattering over long air paths via controlling the polarization state

  • B. Feng (a1) (a2), X.M. Fan (a1) (a3), Z.W. Lu (a1), D.Y. Lin (a1), F. Yang (a1) and Y.L. Wang (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.