Skip to main content Accessibility help
×
×
Home

Studies of ablated plasma and shocks produced in a planar target by a sub-nanosecond laser pulse of intensity relevant to shock ignition

  • J. Badziak (a1), L. Antonelli (a2) (a3), F. Baffigi (a4), D. Batani (a3), T. Chodukowski (a1), G. Cristoforetti (a4), R. Dudzak (a5), L.A. Gizzi (a4), G. Folpini (a3), F. Hall (a6), Z. Kalinowska (a1), P. Koester (a4), E. Krousky (a7), M. Kucharik (a8), L. Labate (a4), R. Liska (a8), G. Malka (a3), Y. Maheut (a3), P. Parys (a1), M. Pfeifer (a7), T. Pisarczyk (a1), O. Renner (a7), M. Rosiński (a1), L. Ryć (a1), J. Skala (a7), M. Smid (a7) (a8), C. Spindloe (a6), J. Ullschmied (a5) and A. Zaraś-Szydłowska (a1)...

Abstract

The effect of laser intensity on characteristics of the plasma ablated from a low-Z (CH) planar target irradiated by a 250 ps, 0.438 µm laser pulse with the intensity of up to 1016 W/cm2 as well as on parameters of the laser-driven shock generated in the target for various scale-lengths of preformed plasma was investigated at the kilojoule Prague Asterix Laser System (PALS) laser facility. Characteristics of the plasma were measured with the use of 3-frame interferometry, ion diagnostics, an X-ray spectrometer, and Kα imaging. Parameters of the shock generated in a Cl doped CH target by the intense 3ω laser pulse were inferred by numerical hydrodynamic simulations from the measurements of craters produced by the shock in the massive Cu target behind the CH layer. It was found that the pressure of the shock generated in the plastic layer is relatively weakly influenced by the preplasma (the pressure drop due to the preplasma presence is ~10–20%) and at the pulse intensity of ~1016 W/cm2 the maximum pressure reaches ~80–90 Mbar. However, an increase in pressure of the shock with the laser intensity is slower than predicted by theory for a planar shock and the maximum pressure achieved in the experiment is by a factor of ~2 lower than predicted by the theory. Both at the preplasma absence and presence, the laser-to-hot electrons energy conversion efficiency is small, ~1% or below, and the influence of hot electrons on the generated shock is expected to be weak.

Copyright

Corresponding author

Address correspondence and reprint requests to: Jan Badziak, Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland. E-mail: jan.badziak@ipplm.pl

References

Hide All
Atzeni, S., Schiavi, A., Califano, F., Cattani, F., Cornolti, F., Del Sarto, D., Liseykina, T.V., Macchi, A., & Pegoraro, F. (2005). Fluid and kinetic simulation of inertial confinement fusion plasmas. Comput. Phys. Commun. 169, 153159.
Atzeni, S., Ribeyre, X., Schurtz, G., Schmitt, A.J., Canaud, B., Betti, R., & Perkins, L.J. (2014). Shock ignition of thermonuclear fuel: Principles and modelling. Nucl. Fusion 54, 054008.
Badziak, J., Makowski, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E., & Vankov, A.B. (2001). Intensity-dependent characteristics of a picosecond laser-produced Cu plasma. J. Phys. D: Appl. Phys. 34, 18851891.
Badziak, J., Hora, H., Woryna, E., Jabłoński, S., Laśka, L., Parys, P., Rohlena, K., & Wołowski, J. (2003). Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser–plasma interactions. Phys. Lett. A 315, 452457.
Batani, D., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Chodukowski, T., Consoli, F., Cristoforetti, G., De Angelis, R., Dudzak, R., Folpini, G., Giuffrida, L., Gizzi, L.A., Kalinowska, Z., Koester, P., Krousky, E., Krus, M., Labate, L., Levato, T., Maheut, Y., Malka, G., Margarone, D., Marocchino, A., Nejdl, J., Nicolai, Ph., O'Dell, T., Pisarczyk, T., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Sawicka, M., Schiavi, A., Skala, J., Smid, M., Spindloe, Ch., Ullschmied, J., Velyhan, A., & Vinci, T. (2014a). Generation of high pressure shocks relevant to the shock-ignition intensity regime. Phys. Plasmas 21, 032710.
Batani, D., Baton, S., Casner, A., Depierreux, S., Hohenberger, M., Klimo, O., Koenig, M., Labaune, C., Ribeyre, X., Rousseaux, C., Schurtz, G., Theobald, W., & Tikhonchuk, V.T. (2014b). Physics issues for shock ignition. Nucl. Fusion 54, 054009.
Baton, S.D., Koenig, M., Brambrink, E., Schlenvoigt, H.P., Rousseaux, C., Debras, G., Laffite, S., Loiseau, P., Philippe, F., Ribeyre, X., & Schurtz, G. (2012). Experiment in planar geometry for shock ignition studies. Phys. Rev. Lett. 108, 195002.
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W., & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.
Betti, R., Theobald, W., Zhou, C.D., Anderson, K.S., McKenty, P.W., Skupsky, S., Shvarts, D., Goncharov, V.N., Delettrez, J.A., Radha, P.B., Sangster, T.C., Stoeckl, C., & Meyerhofer, D.D. (2008). Shock ignition of thermonuclear fuel with high areal densities. J. Phys.: Conf. Ser. 112, 022024.
Gitomer, S.J., Jones, R.D., Begay, F., Ehler, A.W., Kephart, J.F., & Kristal, R. (1986). Fast ions and hot electrons in the laser–plasma interaction. Phys. Fluids 29, 26792688.
Guskov, S.Yu., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J., & Pisarczyk, P. (2007). Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse. J. Exp. Theor. Phys. 105, 793802.
Gus'kov, S., Ribeyre, X., Touati, M., Feugeas, J.-L., Nicolai, Ph., & Tikhonchuk, V. (2012). Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett. 109, 255004.
Gus'kov, S.Yu., Demchenko, N.N., Kasperczuk, A., Pisarczyk, T., Kalinowska, Z., Chodukowski, T., Renner, O., Smid, M., Krousky, E., Pfeifer, M., Skala, J., Ullschmied, J., & Pisarczyk, P. (2014). Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2. Laser Part. Beams 32, 177195.
Hohenberger, M., Theobald, W., Hu, S.X., Anderson, K.S., Betti, R., Boehly, T.R., Casner, A., Fratanduono, D.E., Lafon, M., Meyerhofer, D.D., Nora, R., Ribeyre, X., Sangster, T.C., Schurtz, G., Seka, W., Stoeckl, C., & Yaakobi, B. (2014). Shock-ignition relevant experiments with planar targets on OMEGA. Phys. Plasmas 21, 022702.
Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix laser system. Phys. Plasmas 8, 2495.
Kapin, T., Kucharik, M., Limpouch, J., Liska, R., & Vachal, P. (2008). Arbitrary Lagrangian Eulerian method for laser plasma simulations, Int. J. Numer. Methods Fluids 56, 13371342.
Klimo, O., Weber, S., Tikhonchuk, V.T., & Limpouch, J. (2010). Particle-in-cell simulations of laser–plasma interaction for the shock ignition scenario. Plasma Phys. Control. Fusion 52, 055013.
Koch, J.A., Aglitskiy, Y., Brown, C., Cowan, T., Freeman, R., Hatchett, S., Holland, G., Key, M., MacKinnon, A., Seely, J., Snavely, R., & Stephens, R. (2003). 4.5- and 8-keV emission and absorption x-ray imaging using spherically bent quartz 203 and 211 crystals. Rev. Sci. Instrum. 74, 2130.
Koester, P., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Batani, D., Cecchetti, C.A., Chodukowski, T., Consoli, F., De. Cristoforetti, G., Angelis, R., Folpini, G., Gizzi, L.A., Kalinowska, Z., Krousky, E., Kucharik, M., Labate, L., Levato, T., Liska, R., Malka, G., Maheut, Y., Marocchino, A., Nicolai, P., O'Dell, T., Parys, P., Pisarczyk, T., Raczka, P., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Ryc, L., Skala, J., Schiavi, A., Schurtz, G., Smid, M., Spindloe, C., Ullschmied, J., Wolowski, J., & Zaras, A. (2013). Recent results from experimental studies on laser–plasma coupling in a shock ignition relevant regime. Plasma Phys. Control. Fusion 55, 124045.
Kruer, W.L. (1988). The Physics of Laser–Plasma Interactions. New York: Addison - Wesley.
Labate, L., Köster, P., Levato, T., & Gizzi, L.A. (2012). A novel technique for single-shot energy-resolved 2D x-ray imaging of plasmas relevant for the inertial confinement fusion. Rev. Sci. Instrum. 83, 103504.
Lafon, M., Ribeyre, X., & Schurtz, G. (2013). Optimal conditions for shock ignition of scaled cryogenic deuterium–tritium targets. Phys. Plasmas 20, 022708.
Láska, L., Jungwirth, K., Králiková, B., Krása, J., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J., Badziak, J., Parys, P., Wolowski, J., Woryna, E., Gammino, S., Torrisi, L., Boody, F.P., & Hora, H. (2003). Generation of multiply charged ions at low and high laser-power densities. Plasma Phys. Control. Fusion 45, 585599.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.
Liska, R., Kucharik, M., Limpouch, J., Renner, O., Vachal, P., Bednarik, L., & Velechovsky, J. (2011). ALE method for simulations of laser-produced plasmas. In Finite Volumes for Complex Applications VI, Problems & Perspectives, (Fort, J., Furst, J., Halama, J., Herbin, R. and Hubert, F. Eds.) Vol. 2, pp. 857873. Berlin, Heidelberg: Springer-Verlag.
MacFarlane, J.J., Golovkin, I.E., Wang, P., Woodruff, P.R., & Pereyra, N.A. (2007). SPECT3D – A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Phys. 3, 181190.
Nora, R., Theobald, W., Betti, R., Marshall, F.J., Michel, D.T., Seka, W., Yaakobi, B., Lafon, M., Stoeckl, C., Delettrez, J., Solodov, A.A., Casner, A., Reverdin, C., Ribeyre, X., Vallet, A., Peebles, J., Beg, F.N., & Wei, M.S. (2015). Gigabar spherical shock generation on the OMEGA laser. Phys. Rev. Lett. 114, 045001.
Perkins, L.J., Betti, R., LaFortune, K.N., & Williams, W.H. (2009). Shock ignition: A new approach to high gain inertial confinement fusion on the national ignition facility. Phys. Rev. Lett. 103, 045004.
Pisarczyk, T., Gus'kov, S.Yu., Kalinowska, Z., Badziak, J., Batani, D., Antonelli, L., Folpini, G., Maheut, Y., Baffigi, F., Borodziuk, S., Chodukowski, T., Cristoforetti, G., Demchenko, N.N., Gizzi, L.A., Kasperczuk, A., Koester, P., Krousky, E., Labate, L., Parys, P., Pfeifer, M., Renner, O., Smid, M., Rosinski, M., Skala, J., Dudzak, R., Ullschmied, J., & Pisarczyk, P. (2014). Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target. Phys. Plasmas 21, 012708.
Puell, H. (1970). Heating of laser produced plasma generated at plane solid targets. Z. Naturforsch. 25a, 18071815.
Puell, H., Neusser, H.J., & Kaiser, W. (1970). Temperature and expansion energy of laser produced plasmas. Z. Naturforsch. 25a, 18151822.
Ramis, R., Meyer-ter-Vehn, J., & Ramirez, J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun., 180, 977994.
Ribeyre, X., Schurtz, G., Lafon, M., Galera, S., & Weber, S. (2009). Shock ignition: An alternative scheme for HiPER. Plasma Phys. Control. Fusion 51, 015013.
Scherbakov, V.A. (1983). Ignition of a laser-fusion target by a focusing shock wave. Sov. J. Plasma Phys. 9, 240.
Schmitt, A.J., Bates, J.W., Obenschain, S.P., Zalesak, S.T., & Fyfe, D.E. (2010). Shock ignition target design for inertial fusion energy. Phys. Plasmas 17, 042701.
Scott, H.A. (2001). Cretin–a radiative transfer capability for laboratory plasmas. J. Quant. Spectrosc. Radiat. Transf. 71, 689701.
Theobald, W., Betti, R., Stoeckl, C., Anderson, K.S., Delettrez, J.A., Glebov, V.Yu., Goncharov, V.N., Marshall, F.J., Maywar, D.N., McCrory, R.L., Meyerhofer, D.D., Radha, P.B., Sangster, T.C., Seka, W., Shvarts, D., Smalyuk, V.A., Solodov, A.A., Yaakobi, B., Zhou, C.D., Frenje, J.A., Li, C.K., Seguin, F.H., Petrasso, R.D., & Perkins, L.J. (2008). Initial experiments on the shock-ignition inertial confinement fusion concept. Phys. Plasmas 15, 056306.
Torrisi, L., Foti, G., Giuffrida, L., Puglisi, D., Wolowski, J., Badziak, J., Parys, P., Rosinski, M., Margarone, D., Krasa, J., Velyhan, A., & Ullschmied, U. (2009). Single crystal silicon carbide detector of emitted ions and soft x rays from power laser-generated plasmas. J. Appl. Phys. 105, 123304.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A., & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542549.
Woryna, E., Parys, P., Wołowski, J., & Mróz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293321.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed