Skip to main content Accessibility help

Strong terahertz field generation by relativistic self-focusing of hollow Gaussian laser beam in magnetoplasma

  • Saba Hussain (a1), Ram Kishor Singh (a1) and R. P. Sharma (a1)


The present paper proposes a model for the generation of Terahertz (THz) radiation by self-focused hollow Gaussian beam (HGB) in collisionless magnetized rippled density plasma. At high intensities, the change in the electron mass occurs due to relativistic effect, introducing a nonlinearity in the plasma leading to the self-focusing of the HGB. The nonlinear interaction of this highly intense self-focused HGB with the electron plasma wave in the rippled density plasma, satisfying proper phase matching conditions, results in the resonant excitation of THz radiations at the beat frequency. We have studied the dependence of generated THz radiations on the order of the HGB as well as on the static background magnetic field. The results show that the intensity of the generated radiations is highly sensitive to both of these parameters. For the current scheme the power of the generated THz waves comes out to be of the order of Gigawatts.


Corresponding author

Address correspondence and reprint requests to: R. K. Singh, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016, India. E-mail:


Hide All
Akhmanov, A.S., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609.
Amico, C., Houard, A., Akturk, S., Liu, Y., Bloas, J.L., Franco, M., Prade, B., Couairon, A., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Forward THz radiation emission by femtosecond filamentation in gases: Theory and experiment. New J. Phys. 10, 013015.
Bhasin, L. & Tripathi, V.K. (2009). Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Phys. Plasmas 16, 103105.
Brandi, H.S., Manus, C., Mainfray, G., Lehner, T. & Bonnaud, G. (1993). Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B 5, 3539.
Dorranian, D., Ghoranneviss, M., Starodubtsev, M., Yugami, N. & Nishida, Y. (2005). Microwave emission from TW-100 fs laser irradiation of gas jet. Laser Part. Beams 23, 583.
Ebbinghaus, S., Schröck, K., Schauer, J.C., Bründermann, E., Heyden, M., Schwaab, G., Böke, M., Winter, J., Tani, M. & Havenit, M. (2006). Terahertz time-domain spectroscopy as a new tool for the characterization of dust forming plasmas. Plasma Sources Sci. Technol. 15, 72.
Ferguson, B. & Zhang, X.C. (2002). Materials for terahertz science and technology. Nat. Mater. 1, 26.
Hamster, H., Sullivan, A., White, W. & Falcne, R.W. (1993). Subpicosecond electromagnetic pulses from intense laser–plasma interaction. Phys. Rev. Lett. 71, 2725.
Han, P.Y., Cho, G.C. & Xhang, X.C. (2000). Time-domain transillumination of biological tissues with terahertz pulses. Opt. Lett. 25, 242.
Hassan, M.B., Al-Janabi, M.B., Singh, M. & Sharma, R.P. (2012). Terahertz generation by the high intense laser beam. J. Plasma Phys. 78, 553.
Hasson, K.I., Sharma, A.K. & Khamis, R.A. (2010). Relativistic laser self-focusing in a plasma with transverse magnetic field. Phys. Scr. 81, 025505.
Houard, A., Liu, Y., Prade, B., Tikhonchuk, V.T. & Mysyrowicz, A. (2008). Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Phys. Rev. Lett. 100, 255006.
Hu, G.-Y., Shen, B., Lei, A.-L., Li, R.-X. & Xu, Z.-Z. (2010). Transition-Cherenkov radiation of terahertz generated by super-luminous ionization front in femtosecond laser filament. Laser Part. Beams 28, 399.
Hussain, S., Singh, M., Singh, R.K. & Sharma, R.P. (2014). THz generation by self-focusing of hollow Gaussian laser beam in magnetised plasma. Europhys. Lett. 107, 65002.
Jepsen, P.U., Jacobsen, R.H. & Keiding, S.R. (1996). Generation and detection of terahertz pulses from biased semiconductor antennas. J. Opt. Soc. Amer. B 13, 2424.
Kim, K.Y., Taylor, A.J., Glownia, J.H. & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics 2, 605.
Kostin, V.A. & Vvedenskii, N.V. (2010). Ionization-induced conversion of ultrashort Bessel beam to terahertz pulse. Opt. Lett. 35, 247.
Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shmizu, Y. & Sasada, H. (1997). Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 4713.
Kumar, S., Singh, R.K., Singh, M. & Sharma, R.P. (2015). THz radiation by amplitude-modulated self-focused Gaussian laser beam in ripple density plasma. Laser Part. Beams 33, 257.
Lee, Y.S., Meade, T., Perlin, V., Winful, H., Norris, T.B. & Galvanauskas, A. (2000). Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl. Phys. Lett. 76, 2505.
Liu, J., Dai, J., Chin, S.L. & Zhang, X.C. (2010). Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nat. Photonics 4, 627.
Pickwell, E. & Wallace, V.P. (2006). Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys. 39, R301.
Sharma, R.P. & Singh, R.K. (2014). Terahertz generation by two cross focused laser beams in collisional plasmas. Phys. Plasmas 21, 073101.
Sharma, R.P., Singh, M., Sharma, P., Chauhan, P.K. & Ji, A. (2010). Interaction of high power laser beam with magnetized plasma and THz generation. Laser Part. Beams 28, 531.
Shen, Y.C., Lo, T., Taday, P.F., Cole, B.E., Tribe, W.R. & Kemp, M.C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116.
Shen, Y.C., Upadhya, P.C., Beere, H.E., Linfield, E.H., Davies, A.G., Gregory, I.S., Baker, C., Tribe, W.R. & Evans, M.J. (2004). Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers. Appl. Phys. Lett. 85, 164.
Sheng, Z.M., Mima, K. & Zhang, J. (2005). Powerful terahertz emission from laser wake fields excited in inhomogeneous plasmas. Phys. Plasmas 12, 123103.
Shukla, P.K. & Sharma, R.P. (1982). Alfven-wave generation in a beam-plasma system. Phys. Rev. A 25, 2816.
Singh, M., Singh, R.K. & Sharma, R.P. (2013). THz generation by cosh-Gaussian lasers in a rippled density plasma. Europhys. Lett. 104, 35002.
Singh, R.K. & Sharma, R.P. (2014). Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma. Phys. Plasmas. 21, 113109.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-Focusing of Laser Beams in Dielectrics, Plasma and Semiconductors. Delhi: Tata-McGraw-Hill.
Sodha, M.S., Mishra, S.K. & Misra, S. (2009). Focusing of a dark hollow Gaussian electromagnetic beam in a magnetoplasma. J. Plasma Phys. 75, 731.
Sprangle, P., Penano, J.R., Hafizi, B. & Kapetanakos, C.A. (2004). Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces. Phys. Rev. E 69, 066415.
Sprangle, P., Tang, C. & Esarey, E. (1987). Relativistic self-focusing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. PS-15, 145.
Sun, G., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526.
Tonouchi, M. (2007). Cutting-edge terahertz technology. Nat. Photonics 1, 97.
Umstadter, D. (2003). Relativistic laser–plasma interactions. J. Phys. D: Appl. Phys. 36, R151.
Xie, X., Dai, J. & Zhang, X.C. (2006). Coherent control of THz wave generation in ambient air. Phys. Rev. Lett. 96, 075005.
Xu, X., Wang, Y. & Jhe, W. (2000). Theory of atom guidance in a hollow laser beam: Dressed-atom approach. J. Opt. Soc. Am. B 17, 1039.
York, A.G., Milchberg, H.M., Palastro, J.P. & Antonsen, T.M. (2008). Direct acceleration of electrons in a corrugated plasmawaveguide. Phys. Rev. Lett. 100, 195001.
Yoshii, J., Lai, C.H., Katsouleas, T., Joshi, C. & Mori, W.B. (1997). Radiation from Cerenkov wakes in a magnetized plasma. Phys. Rev. Lett. 79, 4194.
Yugami, N., Higashiguchi, T., Gao, H., Sakai, S., Takahashi, K., Ito, H., Nishida, Y. & Katsouleas, T. (2002). Experimental observation of radiation from Cherenkov wakes in a magnetized plasma. Phys. Rev. Lett. 89, 065003.


Related content

Powered by UNSILO

Strong terahertz field generation by relativistic self-focusing of hollow Gaussian laser beam in magnetoplasma

  • Saba Hussain (a1), Ram Kishor Singh (a1) and R. P. Sharma (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.