Skip to main content Accessibility help
×
Home

Stimulated Brillouin backscattering of filamented hollow Gaussian beams

  • R.P. Sharma (a1) and Ram Kishor Singh (a1)

Abstract

This paper presents an investigation for excitation of ion acoustic wave and resulting stimulated Brillouin scattering in a collisionless plasma due to presence of a laser beam carrying null intensity at center (hollow Gaussian beam). In presence of ponderomotive nonlinearity, the pump beam get focused and affects the back stimulated Brillouin scattering process. To understand the nature of laser plasma coupling, a paraxial-ray approximation has been invoked for the propagation of the hollow Gaussian beam, ion acoustic wave, and stimulated Brillouin scattering. It is observed from the result that self-focusing and back reflectivity reduces for higher order of hollow Gaussian beam.

Copyright

Corresponding author

Address correspondence and reprint requests to: Ram Kishor Singh, Centre for Energy Studies, IIT Delhi, India 110016. E-mail: ram007kishor@gmail.com

References

Hide All
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.
Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C. & Woerdman, J.P. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. 45, 81858189.
Cai, Y., Lu, X. & Lin, Q. (2003). Hollow Gaussian beam and their propagation properties. Opt. Lett. 28, 10841086.
Cai, Y. & Zhang, L. (2006). Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express 14, 13531367.
Cai, Y. & Lin, Q. (2004). Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems. J. Opt. Soc. Am. A 21, 6.
Fuchs, J., Labaune, C., Depierreux, S., Tikhonchuk, V.T. and Baldis, H.A. (2000). Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment. Phys. Plasmas 7, 46594668.
Fuchs, J., Labaune, C., Depierreux, S., Baldis, H.A., Michard, A. & James, G. (2001). Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma. Phys. Rev. Lett. 86, 432.
Gao, W., Lu, Z.W., Wang, S.Y., He, W.M. & Hasi, W.L.J. (2010). Measurement of stimulated Brillouin scattering threshold by the optical limiting of pump output energy Laser Part. Beams 28, 179184.
Grow, D.T., Ishaaya, A.A., Vuong, L.T. & Gaeta, A.L. (2006). Collapse dynamics of supper-Gaussian beam. Opt.Soc. Am. 14, 5468.
Gupta, Ruchika., Sharma, Prerana., Rafat, M. & Sharma, R.P. (2011). Cross-focusing of two hollow Gaussian laser beam in plasma. Laser Part. Beams 29, 227230.
Gill, T.S., Mahajan, R. & Kaur, R. (2010). Relativistic and ponderomotive effects on evolution of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 28, 521529.
Herman, R.M. & Wiggins, T.A. (1991). Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932.
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasma. Phys. Fluids 16, 1522.
Kruer, W.L. (1974). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.
Krall, N.A. & Trivelpicec, A.W. (1973). Principle of Plasma Physics. Tokyo: McGraw Hill-Kogakusha.
Lee, H.S., Stewart, B.W., Choi, K. & Fenichel, H. (1994). Holographic nondiverging hollow beam. Phys. Rev. A 49, 4922.
Milchberg, H.M., Durfee, C.G III & Mcilarth, T.J. (1995). High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.
Mendonca, J.T., Thide, B. & Then, H. (2009). Stimulated Raman and brillouin backscattering of collimated beams carrying orbital angular momentum. Phys. Rev. Lett. 102, 185005.
Matsuoka, T., Lei, A., Yabuuchi, T., Adumi, K., Zheng, J., Kodamal, R., Sawai, K., Suzuki, K., Kitagawa, Y., Norimatsu, T., Nagai, K., Nagatomo, H., Izawa, Y., Mima, K., Sentoku, Y. & Tanaka, K.A. (2008). Focus optimization of relativistic self- focusing for anomalous laser penetration into overdense plasmas (super- penetration). Plasma Phys. Contr. Fusion 50, 10501.
Sodha, M.S., Misra, S.K. & Misra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. E 3, 169265.
Sharma, R.P., Sharma, P., Rajput, S. & Bhardwaj, A.K. (2009). Suppression of stimulated Brillouin scattering in laser beam hot spots. Laser Part. Beams 27, 619627.
Sprangle, P. & Esarey, E. (1991). Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 20212024.
Sprangle, P., Esarey, E., Ting, A. & Joyce, G. (1988). Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.
Song, Y., Milam, D. & Hill, W.T. (1999). Long, narrow all-light atom guide. Opt. Lett. 24, 1805.
Tabak, M., Hammer, J., Glinisky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.
Umstadter, D., Chen, S.Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996). Nonlinear optics in relativistic plasmas and laser wakefield acceleration of electrons. Science 273, 472475.
Wang, X. & Littman, M.G. (1993). Laser cavity for generation of variable-radius rings of light. Opt. Lett. 18, 767.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed