Skip to main content Accessibility help

Stimulated Brillouin backscattering of a ring-rippled laser beam in collisionless plasma

  • Gunjan Purohit (a1) and Priyanka Rawat (a1)


The effect of the propagation of a ring-rippled laser beam in the presence of relativistic and ponderomotive non-linearities on the excitation of ion-acoustic wave (IAW) and resulting stimulated Brillouin backscattering in collisionless plasma at relativistic powers is studied. To understand the nature of propagation of the ring ripple-like instability, a paraxial-ray approach has been invoked in which all the relevant parameters correspond to a narrow range around the irradiance maximum of the ring ripple. Modified coupled equations for growth of ring ripple in the plasma, generations of IAW and back-stimulated Brillouin scattering (SBS) are derived from fluid equations. These coupled equations are solved analytically and numerically to study the intensity of ring-rippled laser beam and excited IAW as well as back reflectivity of SBS in the plasma for various established laser and plasma parameters. It is found that the back reflectivity of SBS is enhanced due to the strong coupling between ring-rippled laser beam and the excited IAW. The results also show that the back reflectivity of SBS reduce for higher intensity of the laser beam.


Corresponding author

Address correspondence and reprint requests to: Gunjan Purohit, Laser Plasma Computational Laboratory, Department of Physics, DAV (PG) College, Dehradun, Uttarakhand-248001, India. E-mail:


Hide All
Abbi, S.C. & Mahr, H. (1971). Correlation of filaments in nitrobenzene with laser spikes. Phys. Rev. Lett. 26, 604606.
Afshar-Rad, T., Gizzi, L.A., Desselberger, M. & Willi, O. (1996). Effect of filamentation of Brillouin scattering in large underdense plasmas irradiated by incoherent laser light. Phy. Rev. Lett. 76, 32423245.
Akhmanov, A.S., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. – Usp. 10, 609636.
Aleksandrov, V.V., Brenner, M.V., Koval'skii, N.G., Loburev, S.V. & Rubenchik, A.M. (1985). Brillouin scattering in a laser plasma at moderate intensities 1012–1014 W/cm2. Sov. Phys. – JETP 61, 459463.
Baldis, H.A., Campbell, E.M. & Kruer, W.L. (1991). In Laser Plasma Interactions, Handbook of Plasma Physics. Amsterdam: North-Holland, p. 361.
Baldis, H.A., Labuane, C., Moody, J.D., Jalinaud, T. & Tikhonchuk, V.T. (1998). Localization of stimulated Brillouin scattering in random phase plate speckles. Phys. Rev. Lett. 80, 19001903.
Baldis, H.A., Labuane, C., Schifano, E., Renard, N. & Michard, A. (1996). Resonant seeding of stimulated Brillouin scattering by crossing laser beams. Phys. Rev. Lett. 77, 2957.
Baton, S.D., Amiranoff, F., Malka, V., Modena, A., Salvati, M. & Coulaud, C. (1998). Measurement of the stimulated Brillouin scattering reflectivity from a spatially smoothed laser beam in a homogeneous large scale plasma. Phys. Rev. E 57, R4895R4898.
Berger, R.L., Lasinski, B.F., Langdon, A.B., Kaiser, T.B., Afeyan, B.B., Cohen, B.I., Still, C.H. & Williams, E.A. (1995). Influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in filamentary laser light. Phys. Rev. Lett. 75, 10781081.
Borisov, A.B., Borovisiky, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1992). Relativistic and charge displacement self channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305844.
Brandi, H.S., Manus, C. & Mainfray, G. (1993a). Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47, 3780.
Brandi, H.S., Manus, C., Mainfray, G., Lehner, T. & Bonnaud, G. (1993b). Relativistic and ponderomotive self focusing of a laser beam in radially inhomogeneous plasma - I: Paraxial approximation. Phys. Fluids 5, 35393550.
Cohen, B.I., Baldis, H.A., Berger, R.L., Williams, E.A. & Labaune, C. (1998). Modeling of the competition of stimulated Raman and Brillouin scattering in LULI multiple beam experiments. Phys. Plasmas 5, 34023407.
Chirokikh, A., Seka, W., Simon, A., Craxton, R.S. & Tikhonchuk, V.T. (1998). Stimulated Brillouin scattering in long-scale-length laser plasmas. Phys. Plasmas 5, 11041109.
Divol, L., Cohen, B.I., Williams, E.A., Langdon, A.B. & Lasinski, B.F. (2003). Nonlinear saturation of stimulated Brillouin scattering for long time scales. Phys. Plasmas 10, 37283732.
Fuchs, J., Labuane, C., Depierreux, D., Baldis, H.A., Michard, A. & James, G. (2001). Experimental evidence of plasma-induced incoherence of an intense laser beam propagating in an underdense plasma. Phys. Rev. Lett. 86, 432435.
Fuchs, J., Labuane, C., Depierreux, S., Tikhonchuk, V.T. & Baldis, H.A. (2000). Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment. Phys. Plasmas 7, 46594668.
Gao, W., Lu, Z.W., Wang, S.Y., He, W.M. & Hasi, W.L.J. (2010). Measurement of stimulated Brillouin scattering threshold by the optical limiting of pump output energy. Laser Part. Beams 28, 179184.
Gauniyal, R., Chauhan, P., Rawat, P. & Purohit, G. (2014). Effect of self-focused rippled laser beam on the excitation of ion acoustic wave in relativistic ponderomotive regime. Laser Part. Beams 32, 557568.
Giacone, R.E. & Vu, H.X. (1998). Nonlinear kinetic simulations of stimulated Brillouin-Scattering. Phys. Plasmas 5, 14551460.
Giulietti, A., Macchi, A., Schifano, E., Biancalana, V., Danson, C., Giulietti, D., Gizzi, L.A. & Willi, O. (1999). Stimulated Brillouin scattering from underdense expending plasma in a regime of strong filamentation. Phys. Rev. E 59, 10381046.
Huller, S. (1991). Stimulated Brillouin scattering off non-linear ion acoustic waves. Phys. Fluids B 3, 33173330.
Huller, S., Masson-Laborde, P.E., Pesme, D., Labaune, C. & Bandulet, H. (2008). Modeling of stimulated Brillouin scattering in expanding plasma. J. Phy.: Conf. Ser. 112, 022031022034.
Kumar, A., Gupta, M.K. & Sharma, R.P. (2006). Effect of ultra intense laser pulse on the propagation of electron plasma wave in relativistic and ponderomotive regime and particle acceleration. Laser Part. Beams 24, 403409.
Krall, N.A. & Trivelpicec, A.W. (1973). Principle of Plasma Physics. Tokyo: McGraw Hill-Kogakusha.
Kruer, W.L. (1988). The Physics of Laser Plasma Interaction. New York: Addison-Wesley.
Labaune, C., Baldis, H.A., Schifano, E., Bauer, B.S., Michard, A., Renard, N., Seka, W., Moody, J.D. & Estabrook, K.G. (1996). Location of ion-acoustic waves from back and side stimulated Brillouin scattering. Phys. Rev. Lett. 76, 3727.
Labaune, C., Baldis, H.A. & Tikhonchuk, V.T. (1997). Interpretation of stimulated Brillouin scattering based on the use of random phase plates. Europhys. Lett. 38, 3136.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.
Mahmoud, S.T., Sharma, R.P., Kumar, A. & Yadav, S. (1999). Effect of pump depletion and self-focusing on stimulated Brillouin scattering process in laser–plasma interactions. Phys. Plasmas 6, 927931.
Masson-Laborde, P.E., Huller, S., Pesme, D., Labuane, Ch., Depierreux, S., Loiseau, P. & Bandulet, H. (2014). Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma. Phys. Plasmas 21, 032703032715.
Matsuoka, T., Lei, A., Yabuuchi, T., Adumi, K., Zheng, J., Kodamal, R., Sawai, K., Suzuki, K., Kitagawa, Y., Norimatsu, T., Nagai, K., Nagatomo, H., Izawa, Y., Mima, K., Sentoku, Y. & Tanaka, K.A. (2008). Focus optimization of relativistic self focusing for anomalous laser penetration into over dense plasmas (super-penetration). Plasma Phys. Control. Fusion 50, 10501.
Maximov, A.V., Oppitz, R.M., Rozmus, W. & Tikhonchuk, V.T. (2000). Nonlinear stimulated Brillouin scattering in inhomogeneous plasmas. Phys. Plasmas 7, 42274237.
Moody, J.D., MacGowan, B.J., Rothenberg, J.E., Berger, R.L., Divol, L., Glenzer, S.H., Kirkwood, R.K., Williams, E.A. & Young, P.E. (2001). Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma. Phys. Rev. Lett. 86, 28102813.
Purohit, G., Pandey, H.D., Mahmoud, S. & Sharma, R.P. (2004). Growth of high power laser ripple in plasma and its effect on plasma wave excitation: Relativistic effects. J. Plasma Phys. 70, 2540.
Rawat, P., Gauniyal, R., & Purohit, G. (2014). Growth of ring ripple in a collisionless plasma in relativistic–ponderomotive regime and its effect on stimulated Raman backscattering process. Phys. Plasmas 21, 062109-1-11.
Riconda, C., Heron, A., Pesme, D., Huller, S., Tikhonchuk, V.T. & Detering, F. (2005). Electron and ion kinetic effects in the saturation of a driven ion acoustic wave. Phys. Plasmas 12, 112308-1-13.
Sharma, R.P., Sharma, P., Rajput, S. & Bhardwaj, A.K. (2009). Suppression of stimulated Brillouin scattering in laser beam hot spots. Laser Part. Beams 27, 619627.
Sharma, R.P. & Singh, R.K. (2013). Stimulated Brillouin backscattering of filamented hollow Gaussian beams. Laser Part. Beams 31, 689696.
Singh, A. & Walia, K. (2012). Self-focusing of Gaussian laser beam in collisionless plasma and its effect on stimulated Brillouin scattering process. Opt. Commun. 290, 175182.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. E3, 169265.
Sodha, M.S., Mishra, S. & Mishra, S.K. (2009). Growth of a ring ripple on a Gaussian electromagnetic beam in a plasma with relativistic–ponderomotive nonlinearity. Laser Part. Beams 27, 689698.
Sodha, M.S., Sharma, A., Prakash, G. & Verma, M.P. (2004). Growth of a ring ripple on a Gaussian beam in a plasma. Phys. Plasmas 11, 30233027.
Sodha, M.S., Singh, T., Singh, D.P. & Sharma, R.P. (1981). Growth of laser ripple in a plasma and its effect on plasma wave excitation. Phys. Fluids 24, 914919.
Sodha, M.S., Umesh, G. & Sharma, R.P. (1979). Enhanced Brillouin scattering of a Gaussian laser beam from a plasma. J. Appl. Phys. 50, 46784683.


Stimulated Brillouin backscattering of a ring-rippled laser beam in collisionless plasma

  • Gunjan Purohit (a1) and Priyanka Rawat (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed