Skip to main content Accessibility help

SRS characteristics and its influence on SBS pulse compression in a fluorocarbon liquid

  • H. Yuan (a1), Y. Wang (a1), Z. Lu (a1), Z. Liu (a1), Z. Bai (a1), R. Liu (a1), C. Cui (a1) and H. Zhang (a1)...


In this paper, the occurrence of the stimulated Raman scattering (SRS) and its effects on stimulated Brillouin scattering (SBS) pulse compression in FC-40 are investigated. As the experimental medium, the characteristics of FC-40 are suitable for pulse compression. Firstly, the frequency shifts and the threshold of SRS in FC-40 are studied with a mode-locked laser system as pump source, without taking the SBS effect into account. On the basis of the experimental results, the competition between SRS and SBS as well as its effect on pulse compression is investigated. Results show that SRS gets higher gain and grows rapidly with the increase of the laser intensity by pump effect, which will result in decreasing of SBS energy reflection.


Corresponding author

Address correspondence and reprint requests to: Z. Lu or Y. Wang, National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, P. O. Box 3031, Harbin 150080, China. E-mail: or


Hide All
Ben Yehud, L., Belker, D., Ravnitzki, G. & Ishaaya, A.A. (2014). Competition between stimulated Raman and Brillouin scattering processes in CF4 gas. Opt. Lett. 39, 10261029.
Boyd, R.W. (2003). Nonlinear Optics. New York: Academic Press, ISBN-9780123694706.
Damzen, M. & Hutchinson, H. (1983). Laser pulse compression by stimulated Brillouin scattering in tapered waveguides. IEEE J. Quantum Electron. 19, 714.
Dane, C.B., Neuman, W.A. & Hackel, L.A. (1994). High-energy SBS pulse compression. IEEE J. Quantum Electron. 30, 19071915.
David, T.H. (1980). Pulse compression by stimulated Brillouin scattering. Opt. Lett. 5, 516.
Feng, C.Y., Xu, X.Z. & Diels, J.C. (2014). Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm. Opt. Lett. 39, 33673370.
Guo, X.Y., Hasi, W.L.J., Zhong, Z.M., Jin, C.Y., Lin, D.Y., He, W.M. & Lu, Z.W. (2012). Research on the SBS mediums used in high peak power laser system and their selection principle. Laser Part. Beams 30, 525530.
Hasi, W., Zhong, Z., Qiao, Z., Guo, X., Li, X., Lin, D., He, W., Fan, R. & , Z. (2012). The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering. Opt. Commun. 285, 35413544.
Hasi, W.L.J., Wang, X.Y., Cheng, S.X., Zhong, Z.M., Qiao, Z., Zheng, Z.X., Lin, D.Y., He, W.M. & Lu, Z.W. (2013). Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds. Laser Part Beams 31, 301305.
Jian-Zhi, Z., Gang, C. & Richard, K.C. (1990). Pumping of stimulated Raman scattering by stimulated Brillouin scattering within a single liquid droplet: input laser linewidth effects. J. Opt. Soc. Am. B 7, 108115.
Kmetik, V., Fiedorowicz, H., Andreev, A.A., Witte, K.J., Daido, H., Fujita, H., Nakatsuka, M. & Yamanaka, T. (1998). Reliable stimulated Brillouin scattering compression of Nd:YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz. Appl. Opt. 37, 70857090.
Liu, D., Shi, J., Ouyang, M., Chen, X., Liu, J. & He, X. (2009). Pumping effect of stimulated Brillouin scattering on stimulated Raman scattering in water. Phys. Rev. A. 80, 033808.
Marcus, G., Pearl, S. & Pasmanik, G. (2008). Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm. J. Appl. Phys. 103, 103105.
Mitra, A., Yoshida, H., Fujita, H. & Nakatsuka, M. (2006). Sub nanosecond pulse generation by stimulated brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5J. Japan. J. Appl. Phys. 1: Regul. Pap. Short Notes Rev. Pap. 45, 16071611.
Omatsu, T., Kong, H.J., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., Fujita, H., Miyanaga, N., Nakatsuka, M., Wang, Y., Lu, Z., Zheng, Z., Zhang, Y., Kalal, M., Slezak, O., Ashihara, M., Yoshino, T., Hayashi, K., Tokizane, Y., Okida, M., Miyamoto, K., Toyoda, K., Grabar, A.A., Kabir, M.M., Oishi, Y., Suzuki, H., Kannari, F., Schaefer, C., Pandiri, K.R., Katsuragawa, M., Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M., Lin, D.Y., Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Sharma, R.P., Sharma, P., Rajput, S., Bhardwaj, A.K., Zhu, C.Y. & Gao, W. (2012). The current trends in SBS and phase conjugation. Laser Part. Beams 30, 117174.
Sen, P. & Sen, P.K. (1986). Correlation and competition between stimulated raman and brillouin-scattering processes. Phys. Rev. B 33, 14271429.
Sentrayan, K. & Kushawaha, V. (1993). Competition between steady-state stimulated raman and brillouin-scattering processes in Ch(4) And H-2. J. Phys. D, Appl. Phys 26, 15541560.
Shi, J.L., Chen, W., Mo, X.F., Liu, J., He, X.D. & Yang, K.C. (2012). Experimental investigation on the competition between wideband stimulated Brillouin scattering and forward stimulated Raman scattering in water. Opt. Lett. 37, 29882990.
Trutna, W., Young, P. & Byer, R. (1979). The dependence of Raman gain on pump laser bandwidth. IEEE J. Quantum Electron. 15, 648655.
Weber, M.J. (1994). CRC Handbook of Laser Science and Technology Supplement 2: Optical Materials. Florida Boca Raton: CRC Press. ISBN-13: 978-0849335075.
Xu, X.Z., Feng, C.Y. & Diels, J.C. (2014). Optimizing sub-ns pulse compression for high energy application. Opt. Express 22, 1390413915.
Yoshida, H., Hatae, T., Fujita, H., Nakatsuka, M. & Kitamura, S. (2009). A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength. Opt. Express 17, 1365413662.
Zheng, Z.X., Hasi, W.L.J., Zhao, H., Cheng, S.X., Wang, X.Y., Lin, D.Y., He, W.M. & , Z.W. (2014). Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition. Appl. Phys. B 116, 659663.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed