Skip to main content Accessibility help

Spatiotemporal evolution of a thin plasma foil with Kappa distribution

  • H. Mehdian (a1), A. Kargarian (a1) and K. Hajisharifi (a1)


The one-dimensional behavior of a thin plasma foil heated by laser is studied, emphasizing on the fully kinetic effects associated with initial energetic electrons using a relativistic kinetic 1D3V Particle-In-Cell code. For this purpose, the generalized Lorentzian (Kappa) function inclusive the high energy tail is employed for initial electron distribution. The presence of the initially high-energy electrons leads to a different ion energy spectrum than the initially Maxwellian distribution. It is shown for the smaller Kappa parameter k where the high energy tail of the electron distribution function becomes more significant, the electron cooling rate increases. Moreover, the spatiotemporal evolution of electric field is strongly affected by the initial super-thermal electrons.


Corresponding author

Address correspondence and reprint requests to: H. Mehdian, Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Avenue, Tehran, Iran. E-mail:


Hide All
Bari, M.A., Sheng, Z.M., Wang, W.M., Li, Y.T., Salahuddin, M., Nasim, M.H., Shabbir, N.G., Gondal, M.A. & Zhang, J. (2010). Optimization for deuterium ion acceleration in foam targets by ultra-intense lasers. Laser Part. Beams 28, 333341.
Beutelspacher, M., Grieser, M., Schwalm, D. & Wolf, A. (2000). Longitudinal and transverse electron cooling experiments at the Heidelberg heavy ion storage ring TSR. Nucl. Instr. Meth. A 441, 110115.
Birdsall, C.K. & Langdon, A.B. (1985). Plasma Physics via Computer Simulation. New York: McGraw- Hill.
Chen, Y.T. & Pukhov, M. (2009). A High quality GeV proton beams from a density-modulated foil target. Laser Part. Beams 27, 611617.
Clark, E.L., Krushelnick, K., Davies, J.R., Zepf, M., Tatarakis, M., Beg, F.N., Machacek, A., Norreys, P.A., Santala, M.I.K., Watts, I. & Dangor, A.E. (2000). Measurements of energetic proton transport through magnetized plasma from intense laser interactions with solids. Phys. Rev. Lett. 84, 670.
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneince, S., Newkirk, A., Pepin, H. & Renard-Legalloudec, N. (2004).Ultralow emittance, multi-mev proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.
Diaw, A. & Mora, P. (2012). Thin-foil expansion into a vacuum with a two-temperature electron distribution function. Phys. Rev. E 86, 026403.
Eliezer, S., Nissim, N., Raicher, E. & Martinez-Val, J.M. (2014). Relativistic shock waves induced by ultra-high laser pressure. Laser Part. Beams 32, 243251.
Eliezer, S., Nissim, N., Raicher, E., Martinez-Val, J.M., Mimaand, K. & Hora, H. (2014). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211216.
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 30, 225231.
Ergun, R.E., Carlson, C.W., Mcfadden, J.P., Mozer, L., Muschietti, F.S., Roth, I. & Strangeway, R.J. (1998). Debye-scale plasma structures associated with magnetic-field-aligned electric fields. Phys. Rev. Lett. 81, 826.
Formisano, V., Moreno, G., Palmiotto, F. & Hedgecock, P.C. (1973). Solar wind interaction with the Earth's magnetic field: 1. Magnetosheath. J. Geophys. Res. 78, 3714.
Grismayer, T., Mora, P., Adam, J.C. & Heron, A. (2008). Electron kinetic effects in plasma expansion and ion acceleration. Phys. Rev. E. 77, 066407.
Hellberg, M.A., Mace, R.L., Baluka, T.K., Kourakis, I. & Saini, N.S. (2009). Comment on “Mathematical and physical aspects of Kappa velocity distribution.” Phys. Plasmas 16, 094701.
Hockney, R.W. & Estwood, J.W. (1891). Computer Simulation Using Particles. New York: McGraw-Hill.
Hora, H. (1988). Dynamic superposition of laser fields for acceleration of ions and of electrons up to TeV/cm gain. Laser Part. Beams 6, 625647.
Hora, H. (2012). Fundamental difference between picosecond and nanosecond laser interaction with plasmas: Ultrahigh plasma block acceleration links with electron collective ion acceleration of ultra-thin foils. Laser Part. Beams 30, 325328.
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 27, 3745.
Huang, Y., Duan, X., Lan, X., Tan, Z., Wang, N., Tang, X. & He, Y. (2008). Time-dependent neutral-plasma isothermal expansions into a vacuum. Laser Part. Beams 26, 671675 .
Jablonski, S., Badziak, J. & Raczka, P. (2014). Generation of high-energy ion bunches via laser-induced cavity pressure acceleration at ultra-high laser intensities. Laser Part. Beams 32, 129135.
Khoroshkov, V.S. & Minakova, E.I. (1998). Proton beams in radiotherapy. Euro. J. Phys. 19, 523.
Kiefer, T., Schlegel, T. & Kaluza, M.C. (2013). Plasma expansion into vacuum assuming a steplike electron energy distribution. Phys. Rev. E 87, 043110.
Liu, B., Zhang, H., Fu, L.B., Gu, Y.Q., Zhang, B.H., Liu, M.P., Xie, B.S., Liu, J. & He, X.T. (2010). Ion jet generation in the ultraintense laser interactions with rear-side concave. Laser Part. Beams 28, 351359.
Liu, M.P., Xie, B.S., Huang, Y.S., Liu, J. & Yu, M.Y. (2009). Enhanced ion acceleration by collisionless electrostatic shock in thin foils irradiated by ultraintense laser pulse. Laser Part. Beams 27, 327333.
Maksimovic, M., Pierrard, V. & Riley, P. (1997). Ulysses electron distributions fitted with Kappa Function. Geophys. Res. Lett. 24, 11511154.
Marsch, E., Pilipp, K.W.G., Thieme, M. & Rosenbauer, H. (1989). Cooling of Solar Wind Electrons Inside 0.3 AU. J. Geophys. Res. 9, 68936898.
Mckenna, P., Carroll, D.C., Lundh, O., Nu Rnberg, F., Markey, K.Bandyopadhyay, S., Batani, D., Evans, R.G., Jafer, R., Kar, S., Neely, D., Pepler, D., Quinn, M.N., Redaelli, M.Roth, R., Wahlstrom, C.G., Yuan, X.H. & Zepf, M. (2008). Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beam 26, 591596.
Mora, P. (2005). Thin-foil expansion into a vacuum. Phys. Rev. E 72, 056401.
Mora, P. (2003). Plasma Expansion into a Vacuum. Phys. Rev. Lett. 90, 185002.
Mora, P. & Grismayer, T. (2009). Rarefaction acceleration and kinetic effects in thin-foil expansion into a vacuum. Phys. Rev. Lett. 102, 145001.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems, and prospectives. Laser Part. Beams 22, 512.
Nia, P.A., Logana, B.G., Lunda, S.M., Alexanderal, N., Bienioseka, F.M., Cohena, R.H., Rotha, M. & Schaumanna, G. (2013). Feasibility study of the magnetic beam self-focusing phenomenon in a stack of conducting foils: Application to TNSA proton beams, Laser Part. Beams 31, 8188.
Pierrard, V., Maksimovic, M. & Lemaire, J. (1999). Electron velocity distribution functions from the solar wind to the corona. J. Geophys. Res. 104, 17,02117,032.
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., Mcanny, T., Spencer, I., Machacek, A.C., Allott, R., Clarke, R. J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 19.
Sagisaka, A., Nagatomo, H., Daido, H., Pirozhkov, A.S., Ogura, K., Orimo, S., Mori, M., Nishiuchi, M., Yogo, A. & Kado, M. (2009). Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration. Laser Part. Beams 75, 609617.
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K. & Langdon, A.B. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.
Summers, D. & Thorne, R.M. (1991). The modified plasma dispersion function. Phys. Fluids B 3, 1835.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626.
Yanga, X.H., Maa, Y.Y., Shaoa, F.Q., Xua, H., Yu, M.Y., Gua, Y.Q., Yua, T.P., Yina, Y., Tiana, C.L. & Kawatta, S. (2010). Collimated proton beam generation from ultraintense laser-irradiated hole target. Laser Part. Beams 28, 319325.
Yu, J., Jin, X., Zhou, W., Zhang, B., Zhao, Z., Cao, L., Li, B., Gu, Y., Zhan, R. & Najmudin, Z. (2013). Influence of the initial size of the proton layer in sheath field proton acceleration. Laser Part. Beams 31, 597605.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed