Skip to main content Accessibility help
×
Home

Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse

  • W. Hong (a1), Y. He (a1), T. Wen (a1), H. Du (a1), J. Teng (a1), X. Qing (a1) (a2), Z. Huang (a3), W. Huang (a1), H. Liu (a1), X. Wang (a1), X. Huang (a1), Q. Zhu (a1), Y. Ding (a1) and H. Peng (a1)...

Abstract

We present the temporal and spatial characterization of X-ray sources (at ~1 keV) driven by a 200 TW, 30 fs, 800 nm laser pulse on SILEX-I laser facility at Research Center of Laser Fusion. For laser copper foil interaction with laser intensity between 6 × 1018 W/cm2 and 3 × 1019 W/cm2, the X-ray images show cone-like jet structures. While the yield of X-rays is strongly dependent on the laser intensity, the plasma expansion length is weakly dependent on the laser intensity, and the open angle of the cone-like jet is not correlated to the laser intensity. The formation of the jet structure is attributed to the plasma transverse confine by the self-induced quasi-static magnetic field. An X-ray pedestal 4 ns preceding the main pulse was observed. The correlation between X-ray pedestal and collimated proton beam generation was found.

Copyright

Corresponding author

Address correspondence and reprint requests to: Wei Hong, National Key Laboratory of Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box, 919-986, Mianyang, Sichuan Province, China, 621900. E-mail: jminhong@126.com

References

Hide All
Basov, N.G., Zakharenkov, Y.A., Rupasov, A.A., Sklizkov, G.V. & Shikanov, A.S. (1989). Dense Plasma Diagnostics. Moscow: Nauka.
Burgess, M.D.J., Luther-Davis, B. & Nugent, K.A. (1985). An experimental study of magnetic fields in plasmas created by high intensity one micro laser radiation. Phys. Fluids. 28, 22862297.
Cao, L.F., Uschmann, I., Zamponi, F., Kampfer, T., Fuhrmann, A., Forster, E., Holl, A., Redmer, R., Toleikis, S., Tschentscher, T. & Glenzer, S.H. (2007). Space-time characterization of laser plasma interactions in the warm dense matter regime. Laser Part. Beams 25, 239244.
Cobble, J.A., Schappert, G.T., Jones, L.A., Taylor, A.J., Kyrala, G.A. & Fulton, R.D. (1991). The interaction of a high irradiance, subpicosecond laser pulse with aluminum: The effects of the prepulse on X-ray production. J. Appl. Phys. 69, 33693371.
Dusterer, S., Schwoerer, H., Ziegler, W., Ziener, C. & Sauerbrey, R. (2001). Optimization of EUV radiation yield from laser-produced plasma. Appl. Phys. B 73, 693698.
Faenov, A.Y. & Pikuz, T.A. (2003). Atoms and Plasmas in Super-Intense Laser Fields. Sicily: Erice.
Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.
Gibbon, P. (2005 a). Short Pulse Laser Interactions with Matter: An Introduction. London: Imperial College Press.
Gibbon, P. (2005 b). Short Pulse Laser Interactions with Matter: An Introduction. London: Imperial College Press.
Hertz, H.M., Johansson, G.A., Stollberg, H., De Groot, J., Hemberg, O., Holmberg, A., Rehbein, S., Jansson, P., Eriksson, F. & Birch, J. (2003). Table-top X-ray microscopy: Sources, optics and applications. J. Phys. IV 104, 115119.
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.
Jiang, Z., Kieffer, J.C., Matte, J.P., Chaker, M., Peyrusse, O., Giiles, D., Korn, G., Maksimchuk, A., Coe, S. & Mourou, G. (1995). X-ray spectroscopy of hot solid density plasmas produced by subpicosecond high contrast laser pulses at 1018–1019 W/cm2. Phys. Plasmas 2, 17021711.
Kaluza, M., Schreiber, J., Santala, M.I., Tsakiris, G.D., Eidmann, K., Meyer-Ter-Vehn, J. & Witte, K.J. (2004). Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003.
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.
Kieffer, J.C., Krol, A., Jiang, Z., Chamberlain, C.C., Scalzetti, E. & Ichalalene, Z. (2002). Future of laser-based X-ray sources for medical imaging. Appl. Phys. B. 74, S75S81.
Kruer, W.L. (2003). The Physics of Laser Plasma Interactions. Boulder, Co: Westview Press.
Kulagin, V.V., Cherepenin, V.A., Hur, M.S., Lee, J. & Suk, H. (2008). Evolution of a high-density electron beam in the field of a super-intense laser pulse. Laser Part. Beams 26, 397409.
Kulcsár, G., Budnik, F.W., Herman, P.R., Moskovits, M., Zhao, L. & Marjoribanks, R.S. (2000). Intense picosecond X-ray pulses from laser plasmas by use of nanostructured “velvet” targets. Phys. Rev. Lett. 84, 5149.
Laska, L., Badziak, J., Gammino, S., Jungwirth, K., Kasperczuk, A., Krasa, J., Krousky, E., Kubes, P., Parys, P., Pfeifer, M., Pisarczyk, T., Rohlena, K., Rosinski, M., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J., Velyhan, A. & Wolowsk, J. (2007). The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 25, 549556.
Li, Y.T., Zhang, J.I., Chen, L.M., Xia, J.F., Teng, H., Wei, Z.Y. & Jiang, W.M. (2000). Observation of the transverse pinch of the expansion of an femtosecond laser plasma. Acta Phys. Sini. 49, 14001403.
Malik, H.K., Kumar, S. & Singh, K.P. (2008). Electron acceleration in a rectangular waveguide filled with unmagnetized inhomogeneous cold. Laser Part. Beams 26, 197205.
Murnane, M.M., Kapteyn, H.C. & Falcone, R.W. (1989). High density plasmas produced by ultrafast laser pulses. Phys. Rev. Lett. 62, 155158.
Niu, H.Y., He, X.T., Qiao, B. & Zhou, C.T. (2008). Resonant acceleration of electrons by intense circularly polarized Gaussian laser pulses. Laser Part. Beams 26, 5159.
Peng, H.S. (2006). SILEX-I:300-TW Ti:sapphire laser. Laser Phys. 16, 244247.
Rousse, A., Rischel, C. & Gauthier, J.C. (2001 b). Colloquium: Femtosecond X-ray crystallography. Rev. Mod. Phys. 73, 1731.
Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, P., Forster, E., Geindre, J.P., Audebert, P., Gauthier, J.C. & Hulin, D. (2001 a). Non-thermal melting in semiconductors measured at femtosecond resolution. Nat. 410, 6568.
Rymell, L., Berglund, M. & Hertz, H.M. (1995). Debris-free single-line laser plasma X-ray source for microscopy. Appl. Phys. Lett. 66, 26252627.
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.
Schwarz, H. & Hora, H. (1969). Laser Interaction and Related Plasma Phenomena, Vol. 1 (Schwarz, H. & Hora, H., eds.). New York: Plenum Press.
Singh, K.P. & Malik, H.K. (2008). Resonant enhancement of electron energy by frequency chirp during, laser acceleration in an azimuthal magnetic field in a plasma. Laser Part. Beams 26, 363369.
Sizyuk, V., Hassanein, A. & Sizyuk, T. (2007). Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications. Laser Part. Beams 25, 143154.
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., Mackinnon, A., Offenberger, A., Pennigton, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 2945.
Stamper, J.A., Mclean, E.A. & Ripin, B.H. (1978). Studies of spontaneous magnetic fields in laser-produced plasma by Faraday rotation. Phys. Rev. Lett. 40, 11771181.
Svanberg, S. (2001). Some applications of ultrashort laser pulses in biology and medicine. Meas. Sci. Tech. 12, 17771783.
Teubner, U., Missalla, T. & Uschmann, I. (1996). X-ray spectra from highly ionized dense plasma produced by ultrashort laser pulses. Appl. Phys. B. 62, 213220.
Torrisi, L., Margarone, D., Gammino, S. & Ando, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser Part. Beams 25, 453464.
Turcu, I.C.E. & Dance, J.B. (1998). X-rays From Laser Plasmas: Generation and Applications. New York: John Wiley & Sons.
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.
Zhidkov, A., Sasaki, A., Utsumi, T., Fukumoto, I.I., Tajima, T., Saito, F., Hironaka, Y., Nakamura, K.G., Kondo, K. & Yoshida, M. (2000). Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids. Phys. Rev. E 62, 7232–40.
Zhong, F., Deng, J., Zhang, Z., Qing, L.I. & Xu, Z. (1999). Characteristic of plasma X-ray emissions generated by femtosecond and nanosecond laser pulses. Acta Opt. Sini. 19, 364368.
Zhou, C.T., Yu, M.Y. & He, X.T. (2007). Electron acceleration by high current-density relativistic electron bunch in plasmas. Laser Part. Beams 25, 313319.

Keywords

Spatial and temporal characteristics of X-ray emission from hot plasma driven by a relativistic femtosecond laser pulse

  • W. Hong (a1), Y. He (a1), T. Wen (a1), H. Du (a1), J. Teng (a1), X. Qing (a1) (a2), Z. Huang (a3), W. Huang (a1), H. Liu (a1), X. Wang (a1), X. Huang (a1), Q. Zhu (a1), Y. Ding (a1) and H. Peng (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed