Skip to main content Accessibility help

Simulation of runaway electron inception and breakdown in nanosecond pulse gas discharges

  • Cheng Zhang (a1) (a2), Jianwei Gu (a1), Ruexue Wang (a1) (a2), Hao Ma (a1), Ping Yan (a1) (a2) and Tao Shao (a1) (a2)...


Nanosecond pulse discharges can provide high reduced electric field for exciting high-energy electrons, and the ultrafast rising time of the applied pulse can effectively suppress the generation of spark streamer and produce homogeneous discharges preionized by runaway electrons in atmospheric-pressure air. In this paper, the electrostatic field in a tube-plate electrodes gap is calculated using a calculation software. Furthermore, a simple physical model of nanosecond pulse discharges is established to investigate the behavior of the runaway electrons during the nanosecond pulse discharges with a rise time of 1.6 ns and a full-width at half-maximum of 3–5 ns in air. The physical model is coded by a numerical software, and then the runaway electrons and electron avalanche are investigated under different conditions. The simulated results show that the applied voltage, voltage polarity, and gas pressure can significantly affect the formation of the avalanche and the behavior of the runaway electrons. The inception time of runaway breakdown decreases when the applied voltage increases. In addition, the threshold voltage of runaway breakdown has a minimum value (10 kPa) with the variation of gas pressure.

PACS: 52.80.-s


Corresponding author

Address correspondence and reprint request to: Tao Shao, Institute of Electrical Engineering, Chinese Academy of Sciences, PO Box 2703, 100190 Beijing, China. E-mail:


Hide All
Alekseev, S.B., Lomaev, M.I., Rybka, D.V., Tarasenko, V.F., Shao, T., Zhang, C. & Yan, P. (2013). Generation of runaway electrons in atmospheric pressure air under 30–200 kV voltage pulses of rise time 1.5 ns. High Volt. Engine 39, 21122118.
Babaeva, N.Yu. (2015). Hot secondary electrons in dielectric barrier discharges treated with monte carlo simulation: Implication for fluxes to surfaces. Plasma Sources Sci. Technol. 24, 034012.
Baksht, E.H., Lomaev, M.I., Rybka, D.V., Sorokin, D.A. & Tarasenko, V.F. (2008). Effect of gas pressure on amplitude and duration of electron beam current in a gas-filled diode. Tech. Phys. 53, 15601564.
Baksht, E.Kh., Burachenko, A.G., Kozhevnikov, V.Y., Kozyrev, A.V., Kostyrya, I.D. & Tarasenko, V.F. (2010). Spectrum of fast electrons in a subnanosecond breakdown of air-filled diodes at atmospheric pressure. J. Phys. D: Appl. Phys. 43, 305201.
Boichenko, A.M., Tkachev, A.N. & Yakovlenko, S.I. (2003). The Townsend coefficient and runaway of electrons in electronegative gas. JETP Lett. 78, 709713.
Bratchikov, V.B., Gagarinov, K.A., Kostyrya, I.D., Tarasenko, V.F., Tkachev, A.N. & Yakovlenko, S.I. (2007). X-ray radiation from the volume discharge in atmospheric-pressure air. Tech. Phys. 52, 856864.
Burachenko, A.G. & Tarasenko, V.F. (2010). Effect of nitrogen pressure on the energy of runaway electrons generated in a gas diode. Tech. Phys. Lett. 36, 11581161.
Byszewski, W.W. & Reinhold, G. (1982). X-ray diagnostics of runaway electrons in fast gas discharges. Phys. Rev. A 26, 2826.
Erofeev, M.V., Baksht, E.Kh., Tarasenko, V.F. & Shut'ko, Yu.V. (2013). Generation of runaway electrons in a nonuniform electric field by applying nanosecond voltage pulses with a frequency of 100–1000 Hz. Tech. Phys. 58, 200206.
Gurevich, A.V., Mesyats, G.A., Zybin, K.P., Yalandin, M.I., Reutova, A.G., Shpak, V.G. & Shunailov, S.A. (2012). Observation of the avalanche of runaway electrons in air in a strong electric field. Phys. Rev. Lett. 109, 085002.
Ivanov, S.N. (2013). The transition of electrons to continuous acceleration mode at sub-nanosecond pulsed electric breakdown in high-pressure gases. J. Phys. D: Appl. Phys. 46, 285201.
Kawada, Y. & Hosokawa, T. (1989). Breakdown phenomena of gas-insulated gaps with nanosecond pulses. J. Appl. Phys. 65, 5156.
Korolev, Y.D. & Mesyats, G.A. (1991). Physics of Pulsed Breakdown in Gases. Ekaterinburg: URO-Press.
Kostyrya, I.D. & Tarasenko, V.F. (2015). Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an~0.5 µs front duration. Plasma Phys. Rep. 41, 269273.
Levko, D., Krasik, Y.E. & Tarasenko, V.F. (2012 a). Present status of runaway electron generation in pressurized gases during nanosecond discharges. Int. Rev. Phys. Chem. 6, 165194.
Levko, D., Krasik, Y.E., Tarasenko, V.F., Rybka, D.V. & Burachenko, A.G. (2013). Temporal and spatial structure of a runaway electron beam in air at atmospheric pressure. J. Appl. Phys. 113, 196101.
Levko, D., Tarasenko, V.F. & Krasik, Y.E. (2012 c). The physical phenomena accompanying the sub-nanosecond high-voltage pulsed discharge in nitrogen. J. Appl. Phys. 112, 073304.
Levko, D., Yatom, S., Vekselman, V., Gleizer, J.Z., Gurovich, V.T. & Krasik, Y.E. (2012 b). Numerical simulations of runaway electron generation in pressurized gases. J. Appl. Phys. 111, 013303.
Mao, Z., Zou, X., Wang, X., Liu, X. & Jiang, W. (2009). Circuit simulation of the behavior of exploding wires for nano-powder production. Laser Part. Beams 27, 4955.
Mesyats, G.A., Reutova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2011). On the observed energy of runaway electron beams in air. Laser Part. Beams 29, 425435.
Naidis, G.V. (2011). Simulation of streamers propagating along helium jets in ambient air: Polarity-induced effects. Appl. Phys. Lett. 98, 141501.
Raether, H. (1964). Electron Avalanches and Breakdown in Gases. London: Butterworths Press.
Shao, T., Tarasenko, V.F., Yang, W., Beloplotov, D.V., Zhang, C., Lomaev, M.I., Yan, P. & Sorokin, D.A. (2014). Spots on electrodes and images of a gap during pulsed discharges in an inhomogeneous electric field at elevated pressures of air, nitrogen and argon. Plasma Sources Sci. Technol. 23, 054018.
Shao, T., Tarasenko, V.F., Zhang, C., Baksht, E.Kh., Yan, P. & Shut'ko, Yu.V. (2012). Repetitive nanosecond pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation. Laser Part. Beams 30, 369378.
Shao, T., Tarasenko, V.F., Zhang, C., Baksht, E.K., Zhang, D., Erofeev, M.V., Ren, C.Y., Shutko, Y.V. & Yan, P. (2013). Diffuse discharge produced by repetitive nanosecond pulses in open air, nitrogen, and helium. J Appl. Phys. 113, 093301.
Shkurenkov, I., Burnette, D., Lempert, W.R. & Adamovich, I.V. (2014). Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air. Plasma Sources Sci. Technol. 23, 065003.
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008 a). Supershort avalanche electron beam generation in gases. Laser Part. Beams 26, 605617.
Tarasenko, V.F., Skakun, V.S., Kostyrya, I.D., Alekseev, S.B. & Orlovskii, V.M. (2004). On formation of subnanosecond electron beams in air under atmospheric pressure. Laser Part. Beams 22, 7582.
Tarasenko, V.F., Shpak, V.G., Shunailov, S.A. & Kostyrya, I.D. (2005). Supershort electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.
Tarasenko, V.F. & Yakovlenko, S.I. (2008 b). Runaway electrons and generation of high-power subnanosecond electron beams in dense gases. Phys. Wave Phen. 16, 207229.
Tarasova, L.V., Khudyakova, L.N., Loiko, T.V. & Tsukerman, V.A. (1974). Fast electrons and X-rays from nanosecond gas discharges at 0.1–760 torr. Sov. Phys. – Tech. Phys. 19, 351353.
Wang, X.X., Lu, M.Z. & Pu, Y.K. (2002). Possibility of atmospheric pressure glow discharge in air. Acta Phys. Sin. 51, 27782785.
Wilson, C.T. (1925). The acceleration of β-particles in strong electric fields such as those of thunderclouds. Proc. Camb. Phil. Soc. 22, 534538.
Yatom, S., Gleizer, J.Z., Levko, D., Vekselman, V., Gurovich, V., Hupf, E., Hadas, Y. & Krasik, Y.E. (2011). Time-resolved investigation of nanosecond discharge in dense gas sustained by short and long high-voltage pulse. Europhys. Lett. 96, 65001.
Zhang, C., Tarasenko, V.F., Shao, T., Baksht, E.K., Burachenko, A.G., Yan, P. & Kostyray, I.D. (2013). Effect of cathode materials on the generation of runaway electron beams and X-rays in atmospheric pressure air. Laser Part. Beams 31, 353364.
Zhang, C., Tarasenko, V.F., Shao, T., Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. & Yan, P. (2014). Generation of supershort avalanche electron beams in SF6. Laser Part. Beams 32, 331341.
Zhang, C., Tarasenko, V.F., Shao, T., Beloplotov, D.V., Lomaev, M.I., Wang, R., Sorokin, D.A. & Yan, P. (2015). Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons. Phys. Plasmas 22, 033511.
Zhao, S., Zhua, X., Zhang, R., Luo, H., Zou, X., Wang, X. (2014). X-ray emission from an X-pinch and its applications. Laser Part. Beams 32, 437442.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed