Skip to main content Accessibility help

Self-compression of two co-propagating laser pulse having relativistic nonlinearity in plasma

  • S. Kumar (a1), P. K. Gupta (a1), R. K. Singh (a1), R. Uma (a1) and R. P. Sharma (a1)...


The study proposes a semi-analytical model for the pulse compression of two co-propagating intense laser beams having Gaussian intensity profile in the temporal domain. The high power laser beams create the relativistic nonlinearity during propagation in plasma, which leads to the modification of the refractive index profile. The co-propagating laser beams get self- compressed by virtue of group velocity dispersion and induced nonlinearity. The induced nonlinearity in the plasma broadens the frequency spectrum of the pulse via self-phase modulation, turn to shorter the pulse duration and enhancement of laser beam intensity. The nonlinear Schrodinger equations were set up for co-propagating laser beams in plasmas and have been solved in Matlab by considering paraxial approximation. The propagation characteristics of both laser beams inside plasma are divided into three regions through the critical divider curve, which has been plotted between pulse width τ01 and laser beam power P 01. Based on the preferred value of critical parameters, these regions are oscillatory compression, oscillatory broadening, and steady broadening. In findings, it is observed that the compression of the laser beam depends on the combined intensity of both beams, plasma density, and initial pulse width.


Corresponding author

*Address correspondence and reprint requests to: S. Kumar, Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016, India. E-mail:


Hide All
Akhmanov, S.A., Sukhorukov, P.S. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Phys. Uspekhi 10, 609636.
Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589.
Bharuthram, R. & Parashar, J. (1999). Cross-focusing of two laser beams in a plasma. Phys. Rev. E 60, 3253.
Bokaei, B. & Niknam, A.R. (2014). Increasing the upper-limit intensity and temperature range for thermal self-focusing of a laser beam by using plasma density ramp-up. Phys. Plasmas 21, 032309.
Burnett, N.H. & Corkum, P.B. (1989). Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. B 6, 11951199.
Drake, J.F., Lee, Y.C., Nishikawa, K. & Tsintsadze, N.L. (1976). Breaking of large-amplitude waves as a result of relativistic electron-mass variation. Phys. Rev. Lett. 36, 196.
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.
Gattass, R.R. & Mazur, E. (2008). Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219225.
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.
Karle, C. & Spatschek, K.H. (2008). Relativistic laser pulse focusing and self-compression in stratified plasma-vacuum systems. Phys. Plasmas 15, 123102.
Kruer, W.L. (1976). The Physics of Laser Plasma Interaction. New York: Addison-Wesley, vol. 73, p. 58.
Lemoff, B.E., Yin, G.Y., Gordan, C.L. III, Barty, C.P.J. & Harris, S.E. (1995). Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett. 74, 1574.
Liang, Y., Sang, H.B., Wan, F., Lv, C. & Xie, B.S. (2015). Relativistic laser pulse compression in magnetized plasmas. Phys. Plasmas 22, 073105.
Lin, H., Chen, L.M. & Kieffer, J.C. (2002). Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E 65, 036414.
Mourou, G., Barty, C. & Perry, M.D. (1998). Ultrahigh-intensity lasers: Physics of the extreme on a table top. Phys. Today 51, 2228.
Olumi, M. & Maraghechi, B. (2014). Self-compression of intense short laser pulses in relativistic magnetized plasma. Phys. Plasmas 21, 113102.
Pukhov, A. (2002). Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47.
Pukhov, A., Sheng, Z.M. & Meyer-Ter-vehn, J. (1999). Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.
Purohit, G., Pandey, H.D. & Sharma, R.P. (2003). Effect of cross focusing of two laser beams on the growth of laser ripple in plasma. Laser Part. Beams 21, 567572.
Ross, I.N., Matousek, P., Towrie, M., Langley, A.J. & Collier, J.L. (1997). The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Comm. 144, 125133.
Sharma, A., Borhanian, J. & Kourakis, I. (2009). Electromagnetic beam profile dynamics in collisional plasmas. J. of Phys. A: Math. Theo. 42, 465501.
Sharma, A. & Kourakis, I. (2010). Relativistic laser pulse compression in plasmas with a linear axial density gradient. Plasma Phys. Control. Fusion 52, 065002.
Sharma, R.P. & Chauhan, P.K. (2008). Nonparaxial theory of cross-focusing of two laser beams and its effects on plasma wave excitation and particle acceleration: Relativistic case. Phys. Plasmas 15, 063103.
Shibu, S., Parashar, J. & Pandey, H.D. (1998). Possibility of pulse compression of a short-pulse laser in a plasma. J. Plasma Phys. 59, 9196.
Sholokhov, O., Pukhov, A. & Kostyukov, I. (2003). Self-compression of laser pulses in plasma. Phys. Rev. Lett. 91, 265002.
Shorokhov, O., Pukhov, A. & Kostyukov, I. (2003). Self-compression of laser pulses in plasma. Phys. Rev. Lett. 91, 265002.
Shvets, G., Fisch, N.J., Pukhov, A. & Meyer-Ter-vehn, J. (1998). Superradiant amplification of an ultrashort laser pulse in a plasma by a counter propagating pump. Phys. Rev. Lett. 81, 4879.
Singh, A. & Gupta, N. (2015). Beat wave excitation of electron plasma wave by relativistic cross focusing of cosh-Gaussian laser beams in plasma. Phys. Plasmas 22, 062115.
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976 a). Self-focusing of Laser Beam in Plasma, Dielectric and Semiconductors. Delhi, India: Tata-McGraw-Hill.
Sodha, M.S., Mishra, S.K. & Agarwal, S.K. (2007). Self-focusing and cross-focusing of Gaussian electromagnetic beams in fully ionized collisional magnetoplasmas. Phys. Plasmas 14, 112302.
Sodha, M.S., Tripathi, V.K. & Ghatak, A.K. (1976 b). Self-focusing of laser beams in plasmas and semiconductors Prog. Opt. 13, 169265.
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267.
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed