Skip to main content Accessibility help
×
Home

Second-harmonic generation by relativistic self-focusing of cosh-Gaussian laser beam in underdense plasma

  • Arvinder Singh (a1) and Naveen Gupta (a1)

Abstract

This paper presents theoretical investigation of effect of relativistic self-focusing of cosh-Gaussian (ChG) laser beam on second-harmonic generation in an underdense plasma. Steep transverse density gradients are produced in the plasma by the electron plasma wave excited by relativistic self-focusing of ChG laser beam. The generated plasma wave interacts with the pump beam to produce its second harmonics. Following Jeffrey Wentzel Kramers Brillouin (J.W.K.B) approximation and moment theory the differential equation governing the evolution of spot size of laser beam with distance of propagation has been derived. The differential equation so obtained has been solved numerically by the Runge–Kutta method to investigate the effect of decentered parameter, intensity of laser beam as well as density of plasma on self-focusing of the ChG laser beam, and generation of its second harmonics. It has been observed that the peak intensity of the laser beam shifts in the transverse direction by changing the decentered parameter and a noticeable change is observed on focusing of the laser beam as well as on conversion efficiency of second harmonics.

Copyright

Corresponding author

Address correspondence and reprint requests to: Arvinder Singh, Department of Physics, National Institute of Technology, Jalandhar, India. E-mail: arvinder6@lycos.com

References

Hide All
Agarwal, R.N., Pandey, B.K. & Sharma, A.K. (2001). Resonant second harmonic generation of a millimeter wave in a plasma filled waveguide. Phys. Scr. 63, 243.
Akhiezer, A.I. & Polovin, R.V. (1956). Theory of wave motion of an electron plasma. Sov. Phys.–JETP 3, 696705.
Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589.
Bobin, J.L. (1985). High intensity laser plasma interaction. Phys. Rep. 122, 173.
Brunel, F. (1990). Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the high-intensity limit. J. Opt. Soc. Am. B 7, 521.
Bulanov, S.V., Naumova, N.M. & Pegoraro, F. (1994). Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1, 745.
Burnett, N.H., Baldis, H.A., Richardson, M.C. & Enright, G.D. (1977). Harmonic generation in CO2 laser target interaction. Appl. Phys. Lett. 31, 172174.
Carman, R.L., Forslund, D.W. & Kindel, J.M. (1981 a). Visible harmonic emission as a way of measuring profile steepening. Phys. Rev. Lett. 46, 29.
Carman, R.L., Rhodes, C.K. & Benjamin, R.F. (1981 b). Observation of harmonics in the visible and ultraviolet created in CO2-laser-produced plasmas. Phys. Rev. A 24, 2649.
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 24832486.
Dromey, B., Adams, D., Horlein, R., Nomura, Y., Rykovanov, S.G., Carroll, D.C., Foster, P.S., Kar, S., Markey, K., McKenna, P., Neely, D., Geissler, M., Tsakiris, G.D. & Zepf, M. (2009). Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nat. Phys. 5, 146.
Erokhin, N., Zakharov, V.E. & Moiseev, S.S. (1969). Second harmonic generation by an electromagnetic wave incident on inhomogeneous plasma. Sov. Phys. – JETP 29, 101.
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.
Geddes, C.G.R., Toth, C., Tilborg, J.V., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.
Hora, H. & Ghatak, A.K. (1985). New electrostatic resonance driven by laser radiation at perpendicular incidence in superdense plasmas. Phys. Rev. A 31, 3473.
Jha, P. & Aggarwal, E. (2014). Second harmonic generation by propagation of a p-polarized obliquely incident laser beam in underdense plasma. Phys. Plasmas 21, 053107.
Kant, N., Gupta, D.N. & Suk, H. (2011). Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition. Phys. Lett. A 375, 31343137.
Kant, N., Gupta, D.N. & Suk, H. (2012). Resonant third-harmonic generation of a short-pulse laser from electron–hole plasmas. Phys. Plasmas 19, 013101.
Kant, N. & Sharma, A.K. (2004 a). Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma. J. Phys. D: Appl. Phys. 37, 998.
Kant, N. & Sharma, A.K. (2004 b). Resonant second-harmonic generation of a short pulse laser in a plasma channel. J. Phys. D: Appl. Phys. 37, 2395.
Kaur, S., Sharma, A.K. & Salih, H.A. (2009). Resonant second harmonic generation of a Gaussian electromagnetic beam in a collisional magnetoplasma. Phys. Plasmas 16, 042509.
Konar, S., Mishra, M. & Jana, S. (2007). Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media. Phys. Lett. A 362, 505510.
Lam, J.F., Lippmann, B. & Tappert, F. (1975). Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15, 419421.
Lam, J.F., Lippmann, B. & Tappert, F. (1977). Self-trapped laser beams in plasma. Phys. Fluids 20, 11761179.
Lichters, R., Vehn, J.M. & Pukhov, A. (1996). Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3, 3425.
Lu, B., Ma, H. & Zhang, B. (1999). Propagation properties of cosh-Gaussian beams. Opt. Commun. 164, 165170.
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535538.
Nanda, V. & Kant, N. (2014). Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp Strong self-focusing of a cosh-Gaussian laser beam in collisionless magneto-plasma under plasma density ramp. Phys. Plasmas 21, 072111072117.
Nanda, V., Kant, N. & Wani, M.A. (2013). Sensitiveness of decentered parameter for relativistic self-focusing of hermite-cosh-Ggaussian laser beam in plasma. IEEE Trans. Plasma Sci. 41, 22512256.
Parashar, J. & Pandey, H.D. (1992). Second-harmonic generation of laser radiation in a plasma with a density ripple. IEEE Trans. Plasma Sci. 20, 996.
Patil, S.D., Takale, M.V., Navare, S.T., Fulari, V.J. & Dongare, M.B. (2012). Relativistic self-focusing of cosh-Gaussian laser beams in a plasma. Opt. Laser Technol. 44, 314317.
Singh, A. & Gupta, N. (2015). Second harmonic generation by relativistic self-focusing of q-Gaussian laser beam in preformed parabolic plasma channel. Phys. Plasmas 22, 013102.
Singh, A. & Walia, K. (2011 a). Self-focusing of Gaussian laser beam through collisional plasmas and its effect on second harmonic generation. Laser Part. Beams 29, 407.
Singh, A. & Walia, K. (2011 b). Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energ. 30, 555560.
Singh, A. & Walia, K. (2013). Effect of self-focusing of Gaussian laser beam on second harmonic generation in relativistic plasma. J. Fusion Energ. 33, 8387.
Sodha, M.S., Sharma, J.K., Tewari, D.P., Sharma, R.P. & Kaushik, S.C. (1978). Plasma wave and second harmonic generation. Plasma Phys. 20, 825.
Stamper, J.A., Lehmberg, R.H., Schmitt, A., Herbst, M.J., Young, F.C., Gardner, J.H. & Obenshain, S.P. (1985). Evidence in the second-harmonic emission for self-focusing of a laser pulse in a plasma. Phys. Fluids 28, 25632569.
Sturrock, P.A., Ball, R.H. & Baldwin, D.E. (1965). Radiation at the plasma frequency and its harmonic from a turbulent plasma. Phys. Fluids 8, 1509.
Tajima, T. & Dawson, J.M. (1979). Laser electron accelerator. Phys. Rev. Lett. 43, 267270.
Teubner, U. & Gibbon, P. (2009). High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445479.
Verma, N.K., Agrawal, E. & Jha, P. (2015). Phase-matched second-harmonic generation via laser plasma interaction. Euro Phys. Lett. 109, 15001.
Wilks, S.C., Dawson, J.M., Mori, W.B., Katsouleas, T. & Jones, M.E. (1989). Photon accelerator. Phys. Rev. Lett. 62, 2600.
Willes, A.J., Robinson, P.A. & Melrose, D.B. (1996). Second harmonic electromagnetic emission via Langmuir wave coalescence. Phys. Plasmas 3, 149.

Keywords

Second-harmonic generation by relativistic self-focusing of cosh-Gaussian laser beam in underdense plasma

  • Arvinder Singh (a1) and Naveen Gupta (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed