Skip to main content Accessibility help

Resonant enhancement of electron energy by frequency chirp during laser acceleration in an azimuthal magnetic field in a plasma

  • K.P. Singh (a1) and H.K. Malik (a2)


Electron acceleration by a chirped laser pulse in an azimuthal magnetic field in a plasma has been studied. The betatron resonance saturates and the electrons start losing energy beyond a specific point of time without a frequency chirp. The resonance can be maintained for a longer duration and the energy of the electrons can be enhanced if a suitable frequency chirp is introduced. The duration of interaction increases for a lower plasma density or a lower initial electron energy which causes increase in the electron energy gain. The value of magnetic field required for resonance increases with an increase in plasma density and with a decrease in initial electron energy.


Corresponding author

Address correspondence and reprint requests to: Kunwar Pal Singh, Simutech, 3521 SW 31st. Drive, Gainesville, FL 32608.


Hide All
Dias, J.M., Stenz, C., Lopes, N., Badiche, X., Blasco, F., Santos, A.D., Silva, L., Oliveira, E., Mysyrowicz, A., Antonetti, A. & Mendonça, J.T. (1997). Experimental evidence of photon acceleration of ultrashort laser pulses in relativistic ionization fronts. Phys. Rev. Lett. 78, 47734776.
Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.-P., Burgy, F. & Malka, V. (2004). A laser–plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.
Fomyts'kyi, M., Chiu, C., Downer, M. & Grigsby, F. (2005). Controlled plasma wave generation and particle acceleration through seeding of the forward Raman scattering instability. Phys. Plasmas 12, 023103.
Gahn, C., Tsakiris, G.D., Pukhov, A., Meyer-ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. & Witte, K.J. (1999). Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels. Phys. Rev. Lett. 83, 47724775.
Geddes, C.G.R., Toth, C.S., Tilborg, J. van, Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J. & Leemans, W.P. (2004). High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.
Gordon, D.F., Hafizi, B., Hubbard, R.F., Peñano, J.R., Sprangle, P. & Ting, A. (2003). Asymmetric self-phase modulation and compression of short laser pulses in plasma channels. Phys. Rev. Lett. 90, 215001.
Gupta, D.N. & Suk, H. (2007). Electron acceleration to high energy by using two chirped lasers. Laser Part. Beams 25, 3136.
Haines, M.G. (2001). Generation of an axial magnetic field from photon spin. Phys. Rev. Lett. 87, 135005.
Kalashnikov, M., Osvay, K. & Sandner, W. (2007). High-power Ti:Sapphire lasers: Temporal contrast and spectral narrowing. Laser Part. Beams 25, 219223.
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.
Kostyukov, I.Y., Shvets, G., Fisch, N.J. & Rax, J.M. (2002). Magnetic-field generation and electron acceleration in relativistic laser channel. Phys. Plasmas 9, 636.
Koyama, K., Adachi, M., Miura, E., Kato, S., Masuda, S., Watanabe, T., Ogata, A. & Tanimoto, M. (2006). Monoenergetic electron beam generation from a laser-plasma accelerator. Laser Part. Beams 24, 95100.
Lifschitz, A.F., Faure, J., Glinec, Y., Malka, V. & Mora, P. (2006). Proposed scheme for compact GeV laser plasma accelerator. Laser Part. Beams 24, 255259.
Malik, H.K., Kumar, S. & Nishida, Y. (2007). Electron acceleration by laser produced wake field: Pulse shape effect. Optics Comm. 280, 417.
Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R. & Krushelnick, K. (2004). Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535538.
Mangles, S.P.D., Walton, B.R., Tzoufras, M., Najmudin, Z., Clarke, R.J., Dangor, A.E., Evans, R.G., Fritzler, S., Gopal, A., Hernandez-Gomez, C., Mori, W.B., Rozmus, W., Tatarakis, M., Thomas, A.G.R., Tsung, F.S., Wei, M.S. & Krushelnick, K. (2005). Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 94, 245001.
Mangles, S.P.D., Walton, B.R., Najmudin, Z., Dangor, A.E., Krushelnick, K., Malka, V., Manclossi, M., Lopes, N., Carias, C., Mendes, G. & Dorchies, F. (2006). Table-top laser-plasma acceleration as an electron radiography source. Laser Part. Beams 24, 185190.
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Sandner, W., Schreiber, J., Hilscher, D., Jahnke, U., Andreev, A. & Tikhonchuk, V. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.
Pukhov, A., Sheng, Z.M. & Meyer-ter-Vehn, J. (1999). Particle acceleration in relativistic laser channels, Phys. Plasmas 6, 28472854.
Pukhov, A. & Meyer-ter-Vehn, J. (2002). Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B: Lasers Opt. 74, 355361.
Qiao, B., He, X.T. & Zhu, S.-P. (2006). Fluid theory for quasistatic magnetic field generation in intense laser plasma interaction. Phys. Plasmas 13, 053106-1-7.
Santala, M.I.K., Najmudin, Z., Clark, E.L., Tatarakis, M., Krushelnick, K., Dangor, A.E., Malka, V., Faure, J., Allott, R. & Clarke, R.J. (2001). Observation of a hot high-current electron beam from a self-modulated laser wakefield accelerator. Phys. Rev. Lett. 86, 12271230.
Schmitz, M. & Kull, H.-J. (2002). Single-electron model of direct laser acceleration in plasma channels. Laser Phys. 12, 443.
Schroeder, C.B., Esarey, E., Geddes, C.G.R., Toth, C.S., Shadwick, B.A., Tilborg, J. van, Faure, J. & Leemans, W.P. (2003). Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators. Phys. Plasmas 10, 2039.
Shi, Y.J. (2007) Laser electron accelerator in plasma with adiabatically attenuating density. Laser Part. Beams 25, 259265.
Singh, K.P. (2004). Electron acceleration by a circularly polarized laser pulse in a plasma. Phys. Plasmas 11, 39923996.
Tanimoto, M., Kato, S., Miura, E., Saito, N., Koyama, K. & Koga, J.K. (2003). Direct electron acceleration by stochastic laser fields in the presence of self-generated magnetic fields. Phys. Rev. E 68, 026401-1-7.
Ting, A., Kaganovich, D., Gordon, D.F., Hubbard, R.F. & Sprangle, P. (2005). Generation and measurements of high energy injection electrons from the high density laser ionization and ponderomotive acceleration. Phys. Plasmas 12, 010701-1-4.
Wagner, U., Tatarakis, M., Gopal, A., Beg, F.N., Clark, E.L., Dangor, A.E., Evans, R.G., Haines, M.G., Mangles, S.P.D., Norreys, P.A., Wei, M.-S., Zepf, M. & Krushelnick, K. (2004). Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. Phys. Rev. E 70, 026401.
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291298.


Resonant enhancement of electron energy by frequency chirp during laser acceleration in an azimuthal magnetic field in a plasma

  • K.P. Singh (a1) and H.K. Malik (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed