Skip to main content Accessibility help
×
Home

Relativistic shock waves in the laboratory

  • Shalom Eliezer (a1) (a2), Jose Maria Martinez Val (a1) and Shirly Vinikman Pinhasi (a2)

Abstract

Due to the recent developments in high power lasers in the multi-petawatt domain it seems now feasible to accelerate a micro-foil to relativistic velocities. In this paper, we calculate analytically the high velocities achieved by the ponderomotive force of the irradiating laser. The accelerated foil collides with a second foil resulting in the creation of the relativistic shock waves. The density, pressure, temperature, and shock wave velocities are calculated within the context of relativistic fluid dynamics. The calculated thermodynamic parameters that are achieved in these collisions are enormous.

Copyright

Corresponding author

Address correspondence and reprint requests to: Shalom Eliezer, Soreq. E-mail: shalom.eliezer@gmail.com

References

Hide All
Azechi, H., Sakaiya, T., Watari, T., Karasik, M., et al. (2009). Experimental evidence of impact ignition: 100-fold increase of neutron yield by impactor collision. Phys. Rev. Lett. 102, 235002.
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 2102.
Eliezer, S & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175181.
Eliezer, S. & Hora, H. (1989). Double layers in laser produced plasmas. Phys. Rpt. 172, 339407.
Eliezer, S. & Ricci, R.A. (1991). High-Pressure Equations of State: Theory and Applications, Enrico Fermi international School of Physics, 1989. Amsterdam: North-Holland Publications.
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Bristol: Institute of Physics Publishing.
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 30, 225232.
Eliezer, S., Ghatak, A. & Hora, H. (2002). Fundamentals of Equations of State. Singapore: World Scientific.
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic ion generation in the laser piston regime. Phys. Rev. Lett. 92, 175003.
Hora, H. (2012). Fundamental difference of picosecond to nanosecond laser interaction with plasmas: Ultrahigh plasma block acceleration links with electron collective ion acceleration of ultra-thin foils. Laser Part. Beams 30, 325328.
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers produced by nonlinear forces in laser produced plasmas. Phys. Rev. Lett. 53, 16501652.
Lalousis, P., Földes, I. & Hora, H. (2012). Ultrahigh acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams 30, 233242.
Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics. Oxford: Pergamon Press.
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V.Yu. (2000). Forward ion acceleration in thin films driven by a high intensity laser. Phys. Rev. Lett. 84, 41084111.
Marx, G. (1966) Interstellar vehicle propelled by terrestrial laser beam. Nat. 211, 2223.
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF impact fast ignition. Nucl. Fusion 46, 99103.
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Phys. Rev. Lett. 102, 025002.
Redding, J.L. (1967). Interstellar vehicle propelled by terrestrial laser beam. Nat. 213, 588589.
Robinson, A.P.L., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 013021/1–13.
Simmons, J.F.L. & McInnes, C.R. (1993). Was Marx right? Or how efficient are laser driven interstellar spacecraft? Am. J. Phys. 61, 205207.
Tajima, T. & Mourou, G. (2002). Zettawatt-exawatt lasers and their applications in ultrastrong-field physics. Phys. Rev. ST Accel. Beams 5, 031301.
Taub, A.H. (1948). Relativistic Rankine-Hugoniot Equations. Phys Rev. 74, 328334.
Weinberg, S. (1972). Gravitation and Cosmology. New York: John Wiley & Sons.

Relativistic shock waves in the laboratory

  • Shalom Eliezer (a1) (a2), Jose Maria Martinez Val (a1) and Shirly Vinikman Pinhasi (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed