Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T21:22:36.818Z Has data issue: false hasContentIssue false

Relativistic self-focusing of super-Gaussian laser beam in plasma with transverse magneticfield

Published online by Cambridge University Press:  18 July 2012

Tarsem Singh Gill*
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
Ranju Mahajan
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
Ravinder Kaur
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
Suhail Gupta
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
*
Address correspondence and reprint requests to: Tarsem Singh Gill, Department of Physics, Guru Nanak Dev University, Amritsar-143005, India. E-mail: gillsema@yahoo.co.in

Abstract

This paper presents an investigation of a self-consistent, theoretical model, which explains the ring formation in a super-Gaussian laser beam propagating in plasma with transverse magnetic field, characterized by relativistic nonlinearity. Higher order terms (up to r4) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of beam width parameter on the distance of propagation. Self-focusing of super-Gaussian beam is studied at various values of super-Gaussian coefficient, m and magnetic field. Further, we have studied some distinct features of critical power curves for varying values of magnetic field.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp 10, 609636.CrossRefGoogle Scholar
Anderson, D. (1978). Stationary self-trapped laser beams in plasma. Physica Scripta 18, 3536.CrossRefGoogle Scholar
Anderson, D. & Bonnedal, M. (1979). Variational approach to nonlinear self-focusing of Gaussian laser beams. Phys. Fluids 22, 105109.CrossRefGoogle Scholar
Askar'yan, G.A. (1962). Effect of the gradient of a strong electromagnetic beam on electron and atoms. J. Exp. Theor. Fiz. 42, 15671570.Google Scholar
Baykal, Y. (2004). Correlation and structure functions of Hermite– sinusoidal–Gaussian laser beams in a turbulent atmosphere. J. Opt. Soc. Am. A 21, 12901299.CrossRefGoogle Scholar
Belafhal, A. & Ibnchaikh, M. (2000). Comment on propagation properties of Hermitecosh–Gaussian laser beams. Opt. Commun. 186, 269.CrossRefGoogle Scholar
Cai, Y. & Lin, Q. (2004). Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems. J. Opt. Soc. Am. A 21, 10581065.CrossRefGoogle ScholarPubMed
Casperson, L.W. & Hall, D.G. (1997). J. Opt. Soc. Am. A 14, 3341.CrossRefGoogle Scholar
Chiao, R.Y., Garmire, E. & Townes, C.H. (1964). Self-trapping of optical beams. Phys. Rev. Lett. 13, 479482.CrossRefGoogle Scholar
Cornolti, F., Lucchesi, M. & Zambon, B. (1990). Elliptic Gaussian beam self-focusing in nonlinear media. Opt. Commun. 75, 129135.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron 33, 18791914.CrossRefGoogle Scholar
Eyyuboglu, H.T. & Baykal, Y. (2005). Average intensity and spreading of cosh-Gaussian laser beams in the turbulent atmosphere. Applied Optics 44, 976983.CrossRefGoogle ScholarPubMed
Faisal, M., Mishra, S.K., Verma, M.P. & Sodha, M.S. (2007). Ring formation in self-focusing of electromagnetic beams in plasmas. Phys. Plasmas 14, 103103 (16).CrossRefGoogle Scholar
Fedotov, A.B., Naumov, A.N., Silin, V.P., Uryupin, S.A., Zheltikov, A.M., Tarasevitch, A.P. & Von der Linde, D. (2000). Third-harmonic generation in a laser-pre-excited gas: the role of excited-state neutrals. Phys. Lett. A 271, 407412.CrossRefGoogle Scholar
Fibich, G. (2007). Some modern aspects of self-focusing theory, a chapter in self-focusing: Past and present (Boyd, R.W., Lukishova, S.G. & Shen, Y.R., eds.) New York: Springer Verlag.Google Scholar
Firth, W.J. (1977). Propagation of laser beams through inhomogeneous media. Opt. Commun. 22, 226230.CrossRefGoogle Scholar
Foldes, I.B., Bakos, J.S., Bakonyi, Z., Nagy, T. & Szatmari, S. (1999). Harmonic generation in plasmas of different density gradients. Phys. Lett. A 258, 312316.CrossRefGoogle Scholar
Gagnon, L. & Pare, C. (1991). J. Opt. Soc. Am. A 8, 601.CrossRefGoogle Scholar
Gill, T.S., Mahajan, R. & Kaur, R. (2010a). Relativistic and ponderomotive effects on evolution of laser beam in a non-uniform plasma channel. Laser Part. Beams 28, 1120.CrossRefGoogle Scholar
Gill, T.S., Mahajan, R. & Kaur, R. (2010b). Relativistic and ponderomotive effects on evolution of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 28, 521529.CrossRefGoogle Scholar
Gill, T.S., Mahajan, R. & Kaur, R. (2011a). Self-focusing of cosh-Gaussian laser beam in a plasma with weakly relativistic and ponderomotive regime. Phys. Plasmas 18, 033110(18).CrossRefGoogle Scholar
Gill, T.S., Kaur, R. & Mahajan, R. (2011b). Relativistic self-focusing and self-phase modulation of cosh-Gaussian laser beam in magnetoplasma. Laser Part. Beams (In Press).CrossRefGoogle Scholar
Gill, T.S. & Saini, N.S. (2007). Nonlinear interaction of a rippled laser beam with an electrostatic upper hybrid wave in collisional plasma. Laser Part. Beams 25, 283293.CrossRefGoogle Scholar
Gondarenko, N.A., Ossakow, S.L. & Milikh, G.M. (2005). Generation and evolution of density irregularities due to self-focusing in ionospheric modifications. J.Geophys. Res. 110, A093041–13.Google Scholar
Grow, T.D., Ishaaya, A.A., Vuong, L.T., Gaeta, A.L., Gavish, N. & Fibich, G. (2006). Collapse dynamics of super-Gaussian beams. Opt. Express 14, 54685475.CrossRefGoogle ScholarPubMed
Gurevich, A.V. (1978). Nonlinear phenomenon in the ionosphere. Physics and Chemistry in space 10 (Berlin: Springer).Google Scholar
Hassoon, K.I., Sharma, A.K. & Khamis, R.A. (2010). Relativistic laser self-focusing in a plasma with transverse magnetic field. Phys. Scr. 81, 025505(15).CrossRefGoogle Scholar
Hermann, J. (1991). J. Opt. Soc. Am. B 8, 1507.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspective for high energy density physics with intense heavy ions and laser beams. Laser Part. Beams 23, 395–395.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self focusing of laser radiations in plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Johannisson, P., Anderson, D., Lisak, M. & Marklund, M. (2003). Nonlinear Bessel beams. Opt. Commun. 222, 107115.CrossRefGoogle Scholar
Karlsson, M. & Anderson, D. (1992). Super-Gaussian approximation of the fundamental radial mode in nonlinear parabolic-index optical fibres. J. Opt. Soc. Am. B 9, 15581562.CrossRefGoogle Scholar
Karlsson, M., Anderson, D. & Desaix, M. (1992). Opt. Lett. 17, 22.CrossRefGoogle Scholar
Karlsson, M. (1992). Optical beams in saturable self-focusing media. Phys. Rev. A 46, 27262734.CrossRefGoogle ScholarPubMed
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Kaur, R., Gill, T.S. & Mahajan, R. (2010). Steady state self-focusing, self-phase modulation of laser beam in an inhomogeneous plasma. Optik 122, 375380.CrossRefGoogle Scholar
Kaw, P.K., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16, 15221525.CrossRefGoogle Scholar
Kelley, P.L. (1965). Self-focusing of laser beams and stimulated Raman gain in liquids. Phys. Rev. Lett. 15, 10101012.Google Scholar
Konar, S., Mishra, M. & Jana, S. (2007). Nonlinear evolution of cosh-Gaussian laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media. Phys. Lett. A 362, 505510.CrossRefGoogle Scholar
Kuehl, Th., Ursescu, D., Bagnoud, V., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, P., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & The Phelix Team. (2007). Optimization of non thermal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research(FAIR). Laser Part. Beams 25, 9397.CrossRefGoogle Scholar
Kumar, A., Gupta, M.K. & Sharma, R.P. (2006). Effect of ultraintense laser pulse on the propagation of electron plasma wave in relativistic and ponderomotive regime and particle acceleration. Laser Part. Beams 24, 403409.CrossRefGoogle Scholar
Lam, J.F., Lippmann, B. & Tappert, F. (1977). Self-trapped laser beams in plasma. Phys. Fluids 20, 11761179.CrossRefGoogle Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007). Factor influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (2000). Laser frequency upshift, self-defocusing, and ring formation in tunnel ionizing gases and plasmas Phys. Plasmas 7, 43604363.CrossRefGoogle Scholar
Milchberg, H.M., Durfee, C.G. III & Mcllrath, T.J. (1995). Highorder frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.CrossRefGoogle ScholarPubMed
Misra, S. & Mishra, S.K. (2009). Ring formation in electromagnetic beams propagating in a magnetoplasma. J. Plasma Physics 75, 769785.CrossRefGoogle Scholar
Patil, S.D., Navare, S.T., Takale, M.V. & Dongare, M.B. (2009). Self-focusing of cosh-Gaussian laser beams in a parabolic medium with linear absorption. Opt. Lasers Eng. 47, 604606.CrossRefGoogle Scholar
Patil, S.D., Takale, M.V., Navare, S.T. & Dongare, M.B. (2010). Focusing of Hermite-cosh-Gaussian laser beams in collisionless magnetoplasma. Laser Part. Beams 28, 343349.CrossRefGoogle Scholar
Perkins, F.W. & Goldman, M.V. (1981). Self-focusing of radio waves in an underdense ionosphere. J.Geophys. Res. 86, 600608.CrossRefGoogle Scholar
Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P.J. & Yaakobi, B. (1999). Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Phys. Plasmas 6, 20722080.CrossRefGoogle Scholar
Saini, N.S. & Gill, T.S. (2006). Self-focusing and self-phase modulation of an elliptic Gaussian laser beam in collisionless magnetoplasma. Laser Part. Beams 24, 447453.CrossRefGoogle Scholar
Sarkisov, G.S., Bychenkov, V.Yu., Novikov, V.N., Tikhonchuk, V.T., Maksimchuk, A., Chen, S.-Y., Wagner, R., Mourou, G. & Umstadter, D. (1999). Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. Phys. Rev. E 59, 70427054.CrossRefGoogle ScholarPubMed
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams 23, 503512.CrossRefGoogle Scholar
Sharma, A. (1978). J. Appl. Phys. 49, 2396.Google Scholar
Sharma, A., Verma, M.P. & Sodha, M.S. (2004). Self-focusing of electromagnetic beams in a collisional plasmas with nonlinear absorption. Phys. Plasmas 11, 42754279.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self-focusing of laser beams in dielectric plasma and semi conductors. Tata McGra-Hill, New York.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas and semiconductors. Prog. optics 13, 171265.Google Scholar
Sprangle, P., Hafizi, B. & Penano, J.R. (2000). Laser pulse modulation instabilities in plasma channels. Phys. Rev. E 61, 43814393.CrossRefGoogle ScholarPubMed
Stöhlker, T., Backe, H., Beyer, H., Bosch, F., Braeuning-Demian, A., Hagman, S., Ionescu, D., Jungmann, K., Kluge, H.-J., Kozhuharov, C., Kuehl, Th., Lisen, D., Mann, R., Mokler, P. & Quint, W. (2003). Status and perspectives of atomic physics research at GSI: The new GSI accelerator project. Nucl. Instr. Meth. B 205, 156.CrossRefGoogle Scholar
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R., Cristofari, G., DelPrete, E., Di Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-Mev per nucleon ions in the controlled amount of matter mode (CAM) by using casually isolated targets. Laser Part. Beams 25, 8591.CrossRefGoogle Scholar
Suckewer, S. & Skinner, C.H. (1990). Soft X-ray lasers and their applications. Science 247, 15531557.CrossRefGoogle ScholarPubMed
Suckewer, S. & Skinner, C.H. (1995) Comments At. Mol. Phys. 30, 331.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Takale, M.V., Navare, S.T., Patil, S.D., Fulari, V.J. & Dongare, M.B. (2009). Self-focusing and defocusing of TEMop Hermite–Gaussian laser beams in collisionless plasma. Opt. Commun. 282, 31573162.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effects in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Yu, W., Yu, M.Y., Xu, H., Tian, Y.W., Chen, J. & Wong, A.Y. (2007). Intense local plasma heating by stopping of ultrashort ultraintense laser pulse in dense plasma. Laser Part. Beams 25, 631638.CrossRefGoogle Scholar