Skip to main content Accessibility help

Relativistic acceleration of micro-foils with prospects for fast ignition

  • Shalom Eliezer (a1)


In this work, it is suggested that the ponderomotive force, induced by a multi-petawatt laser on the interface of a vacuum with solid target, can accelerate a micro-foil to relativistic velocities. The extremely high velocities of the micro-foil can be achieved due to the very short time duration (about a picosecond) of the laser pulse. This accelerated micro-foil is used to ignite a pre-compressed cylindrical shell containing the deuterium tritium fuel. The fast ignition is induced by a heat wave produced during the collision of the accelerated foil with the pre-compressed target. This approach has the advantage of separating geometrically the nanoseconds lasers that compress the target with the picosecond laser that accelerates the foil.


Corresponding author

Address correspondence and reprint requests to: Shalom Eliezer, Institute of Nuclear Fusion, Polytechnic University of Madrid, Madrid, Spain. E-mail:


Hide All
Atzeni, S. & Meyer-Ter-Vehn, J.M. (2004). The Physics of Inertial Fusion. Oxford: Clarendon Press.
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mima, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norreys, P.A., Setsuhara, Y., Tagagi, M., Yamanaka, M. & Yamanaka, C. (1991). High density compression experiments at ILE. Laser Part. Beams 9, 193207.
Azechi, H., Sakaiya, T., Watari, T., Karasik, M., Saito, H., Ohtani, K., Hosoda, H., Shiraga, H., Nakai, M., Shigemori, K., Fujiok, A.S., Murakami, M., Johzaki, T., Gardner, J., Colombant, D.G., Bares, J.W., Velikovich, A.L., Aglitskiy, Y., Weaver, J., Obenchain, S., Eliezer, S., Kodama, R., Norimatsu, T., Fujita, H., Mima, K. & Kan, H. (2009). Experimental evidence of impact ignition:100-fold increase of neutron yield by impact or collision. Phys. Rev. Lett. 102, 235002/14.
Basko, M.M., Churazov, M.D. & Aksenov, A.G. (2002). Prospects of heavy ion fusion in cylindrical geometry. Laser Part. Beams 20, 411414.
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001/14.
Basov, N.G., Guskov, S.Y. & Feoktistov, L.P. (1992). Thermo-nuclear gain of ICF targets with direct heating of the ignitor. J. Soviet Laser Res. 13, 396399.
Brenner, C.M., Green, J.S., Robinson, A.P.L., Carroll, D.C., Dromey, B., Foster, P.S., Kar, S., Li, Y.T., Markey, K., Spindloe, C., Streeter, M.J.V., Tolley, M., Wahlstrom, C-G., Xu, M.H., Zepf, M., Mckenna, P. & Neely, D. (2011). Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Laser Part. Beams 29, 345351.
Caruso, A. & Strangio, C. (2001). Studies on non-conventional high gain target design for ICF. Laser Part. Beams 19, 295308.
Eliezer, S. & Ricci, R.A. (1991). High-Pressure Equations of State: Theory and Applications, Enrico Fermi International School of Physics, 1989. Amsterdam: North-Holland Pub.
Eliezer, S. & Martinez Val, J.M. (1998). Proton-boron11 fusion reactions induced by heat detonation burning waves. Laser Part. Beams 16, 581598.
Eliezer, S. (2002). The Interaction of High Power Lasers with Plasmas. Bristol, UK: Institute of Physics.
Eliezer, S., Ghatak, K. & Hora, H. (2002). Fundamentals of Equation of State. Singapore: World Scientific.
Eliezer, S., Murakami, M. & Martinez Val, J.M. (2007). Equation of state and optimum compression in inertial fusion energy. Laser Part. Beams 25, 18.
Eliezer, S. & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175181.
Guskov, S.Y. (2001). Direct ignition of inertial fusion targets by a laser-plasma ion stream. Quan. Electr. 31, 885890.
Guskov, S.Y. (2005). Thermonuclear gain and parameters of fast ignition ICF-targets. Laser Part. Beams 23, 255260.
Hora, H., Badziak, J., Glowaks, S., Jablonski, S., Skladanovski, Z., Osman, F., Cang, Y., Zhang, J., Miley, G.H., Peng, H.S., He, X.T., Zhang, W.Y., Rohlena, K., Ullschmied, J. & Jungwirth, K. (2005). Fusion energy from plasma block ignition. Laser Part. Beams 23, 423432.
Hora, H., Miley, G.H., Flippo, K., Lalousis, P., Castillo, R., Yang, X., Malekynia, B. & Ghoranneviss, M. (2011). Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel. Laser Part. Beams 29, 353363.
Jackel, S., Salzmann, D., Krumbein, A. & Eliezer, S. (1983). Multi-shock compression of solid planar targets using tailored laser pulses. Phys. Plasmas 26, 31383147.
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimatsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T., & Zepf, M. (2001). Fast ignition of ultra-high plasma as a step towards laser fusion ignition. Nat. 412, 798802.
Krasa, J., Lorruso, A., Nassisi, V., Velardi, L. & Velyhan, A. (2011). Revealing of hydrodynamic and electrostatic factors in the center-of-mass velocity of an expanding plasma generated by pulsed laser ablation. Laser Part. Beams 29, 113119.
Lindl, J.D. (1997). Inertial Confinement Fusion: The Quest for Ignition and High Gain Using Indirect Drive. New York: Springer.
Martinez Val, J.M. & Piera, M. (1997). Fusion burning waves ignited by cumulation jets. Fusion Tech. 32, 131151.
Mima, K., Murakami, M., Nakai, S. & Eliezer, S. (2009). Applications of Laser-Plasma Interactions. Boca Raton: CRC Press.
Moses, E.I. (2009). Ignition on the national ignition facility: A path towards inertial fusion energy. Nucl. Fusion 49, 104022/19.
Murakami, M., Nagatomo, H., Azechi, H., Ogando, F., Perlado, M. & Eliezer, S. (2006). Innovative ignition scheme for ICF impact fast ignition. Nucl. Fusion 46, 99103.
Nakamura, H., Sentoku, Y., Matsuoka, T., Kondo, K., Nakatsutsumi, M., Norimatsu, T., Shiraga, H., Tanaka, K.A., Yabuuchi, T. & Kodama, R. (2008). Phys. Rev. Lett. 100, 165001/13.
Norreys, P.A., Allot, R., Clarke, R.J., Colliers, J., Neely, D., Rose, S.J., Zepf, M., Santala, M., Bell, A.R., Krushelnick, K., Dangor, A.E., Woolsey, N.C., Evans, R.G., Habara, H., Norimatsu, T. & Kodama, R. (2000). Experimental studies of the advanced fast ignitor scheme. Phys. Plasmas 7, 37213726.
Pae, K.H., Choi, I.W. & Lee, J. (2011). Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure acceleration regime. Laser Part. Beams 29, 1116.
Piriz, A.R., Lopez Cela, J.J., Cortazar, O.D., Tahir, N.A. & Hoffmann, D.H.H. (2005). Rayleigh-Taylor instability in elastic solids. Phys. Rev. E 72 056313/110.
Rosen, M.D. (1999). The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial. Phys. Plasma 5, 16901699.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.
Torrisi, L., Caridi, F. & Giuffrida, L. (2011). Protons and ion acceleration from thick targets at 1010 W/cm2 laser pulse intensity. Laser Part. Beams 29, 2938.
Vauzour, B., Perez, F., Volpe, L., Lancaster, K., Nicolai, P., Batani, D., Baton, S.D., Beg, F.N., Benedetti, C., Brambrink, E., Chawla, S., Dorchies, F., Fourment, C., Galimberti, M., Gizzi, L.A., Heathcote, R., Higginson, D.P., Hulin, S., Jafer, R., Koster, P., Labate, L., Mackinnon, A.J., Macphee, A.G., Nazarov, W., Pasley, J., Regan, C., Ribeyre, X., Richetta, M., Schurtz, G., Sgattoni, A. & Santos, J.J. (2011). Phys. Plasma 18, 043108/19.
Velarde, G. & Carpintero-Santamaria, N. (2007). Inertial Confinement Nuclear Fusion: A Historical Approach by its Pioneers. London: Foxwell and Davies Pub.
Velarde, P., Ogando, F., Eliezer, S., Martinez Val, J.M., Perlado, J.M. & Murakami, M. (2005). Comparison between jet collision and shell impact concepts for fast ignition. Laser Part. Beams 23, 4346.
Zeldovich, Ya.B. & Raizer, Yu.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamics Phenomena, Hayes, W.D. & Probstein, R.F.New York: Academic Press.


Relativistic acceleration of micro-foils with prospects for fast ignition

  • Shalom Eliezer (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed