Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T14:18:31.930Z Has data issue: false hasContentIssue false

Ramp wave loading experiments driven by heavy ion beams: A feasibility study

Published online by Cambridge University Press:  16 September 2009

A. Grinenko
Affiliation:
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, United Kingdom
D.O. Gericke*
Affiliation:
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, United Kingdom
D. Varentsov
Affiliation:
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
*
Address correspondence and reprint requests to: D.O Gericke, Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom. E-mail: d.gericke@warwick.ac.uk

Abstract

A new design for heavy-ion beam driven ramp wave loading experiments is suggested and analyzed. The proposed setup utilizes the long stopping ranges and the variable focal spot geometry of the high-energy uranium beams available at the GSI Helmholtzzentrum für Schwerionenforschung and Facility for Antiproton and Ion Research accelerator centers in Darmstadt, Germany. The release wave created by ion beams can be utilized to create a planar ramp loading of various samples. In such experiments, the predicted high pressure amplitudes (up to 10 Mbar) and short timescales of compression (<10 ns) will allow to test the time-dependent material deformation at unprecedented extreme conditions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, R., Colton, E., Fenster, S., Foss, M., Magelssen, G. & Moretti, A. (1982). Utilization of high energy, small emittance accelerators for ICF target experiments. Nucl. Instr. Meth. Phys. Res. 199, 557561.CrossRefGoogle Scholar
Azteni, S. & Meyer-ter Vehn, J.M. (2004). The Physics of Inertial Fusion. Oxford: Clarendon Press.Google Scholar
Azizi, N., Hora, H., Miley, G., Malekynia, B., Ghoranneviss, M. & He, X. (2009). Threshold for laser driven block ignition for fusion energy from hydrogen boron-11. Laser Part. Beams 27, 201206.CrossRefGoogle Scholar
Bakshi, L., Eliezer, S., Henis, Z., Nissim, N., Perelmutter, L., Moreno, D., Sudai, M. & Mond, M. (2009). Equations of state and the ellipsometry diagnostics. Laser Part. Beams 27, 7984.CrossRefGoogle Scholar
Barnes, J.F., Blewett, P.J., McQueen, R.G., Meyer, K.A. & Venable, D. (1974). Taylor instabilities in solids. J. Appl. Phys. 45, 727.Google Scholar
Bastea, M., Bastea, S., Emig, J.A., Springer, P.T. & Reisman, D.B. (2005). Kinetics of propagating phase transformation in compressedbismuth. Phys. Rev. B 71, 180101.Google Scholar
Becker, F., Hug, A., Forck, P., Kulish, M., Ni, P., Udrea, S. & Varentsov, D. (2006). Design, development, and testing of non-intercepting profile diagnostics for intense heavy ion beams using a capacitive pickup and beam induced gas fluorescence monitors. Laser Part. Beams 24, 541551.Google Scholar
Belonoshko, A.B., Ahuja, R. & Johansson, B. (2003). Stability of the body-centred-cubic phase of iron in the Earths inner core. Nat. 424, 1032.CrossRefGoogle ScholarPubMed
Boehler, R. (2000). High-pressure experiments and the phase diagram of lower mantle and core materials. Rev. Geophys. 38, 221.Google Scholar
Boettger, J.C. & Wallace, D.C. (1997). Metastability and dynamics of the shock-induced phase transition in iron. Phys Rev. B. 55, 2840.CrossRefGoogle Scholar
Cauble, R., Reisman, D.B., Asay, J.R., Hall, C.A., Knudson, M.D., Hemsing, W.F., Goforth, J.H. & Tasker, D.G. (2002). Isentropic compression experiments to 1 Mbar using magnetic pressure. J. Phys. Condens. Matter 14, 10821.Google Scholar
Chhabildas, L.C. & Barker, L.M. (1986). Dynamic quasi-isentropic compression techniques: applications to aluminum and tungsten. Sandia Report SAND86–1888.Google Scholar
Collins, G.W., Celliers, P.M., Da Silva, L.B., Cauble, R., Gold, D.M., Foord, M.E., Holmes, N.C., Hammel, B.A., Wallace, R.J. & Ng, A. (2001). Temperature measurements of shock compressed liquid deuterium up to 230 GPa. Phys. Rev. Lett. 87, 165504.CrossRefGoogle ScholarPubMed
Davis, J.P. (2006). Experimental measurement of the principal isentrope for aluminium 6061-T6 to 240 GPa. J. Appl. Phys. 99, 103512.CrossRefGoogle Scholar
Dolan, D.H., Knudson, M.D., Hall, C.A. & Deeney, C. (2007). A metastable limit for compressed liquid water. Nat. Physics 3, 339.CrossRefGoogle Scholar
Fortov, V.E., Ilkaev, R.I., Arinin, V.A., Burtzev, V.V., Golubev, V.A., Iosilevskiy, I.L., Khrustalev, V.V., Mikhailov, A.L., Mochalov, M.A., Ternovoi, V.Y., Zhernokletov, M.V., Nardi, E., Maron, Y. & Hoffmann, D. (2007). Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99, 0185001.CrossRefGoogle Scholar
Gericke, D.O., Schlanges, M. & Bornath, T. (2002). Stopping power of nonideal, partially ionized plasmas. Phys. Rev. E 65, 036406.CrossRefGoogle ScholarPubMed
Gericke, D. (2002 a). Stopping power for strong beam-plasma coupling. Laser Part. Beams 20, 471474.CrossRefGoogle Scholar
Gericke, D. (2002 b). Stopping power for strong beam-plasma coupling. Laser Part. Beams 20, 643–643.Google Scholar
Grinenko, A. (2009). One-dimensional hydrodynamic simulation of high energy density experiments. Nucl. Instr. Meth. A 606, 193195.CrossRefGoogle Scholar
Grinenko, A., Gericke, D.O., Glenzer, S.H. & Vorberger, J. (2008). Probing the hydrogen melting line at high pressures by dynamic compression. Phys. Rev. Lett. 101, 194801.CrossRefGoogle ScholarPubMed
Guillot, T. (1999). Interiors of giant planets inside and outside thesolar system. Sci. 286, 72.CrossRefGoogle Scholar
Gutbrod, H.H. (2006). FAIR Baseline Technical Report. Darmstadt: GSI-Darmstadt.Google Scholar
Hayes, D. (2001). Backward integration of the equations of motion to correct for free surface perturbations. Sandia Report SND2001–1440.Google Scholar
Hayes, D.B., Hall, C.A., Asay, J.R. & Knudson, M.D. (2004). Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading. J. Appl. Phys. 96, 5520.CrossRefGoogle Scholar
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V. & Tahir, N.A. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation-of-state studies. Phys. Plasmas 9, 3651.Google Scholar
Hoffmann, D., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.CrossRefGoogle Scholar
Jayarama, A. (1986). Ultrahigh pressures. Rev. Sci. Instrum. 57, 1013.CrossRefGoogle Scholar
Knudson, M.D., Hanson, D.L., Bailey, J.E., Hall, C.A. & Asay, J.R. (2003). Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa. Phys. Rev. Lett. 90, 035505.CrossRefGoogle ScholarPubMed
Laio, A., Bernard, S., Chiarotti, G.L., Scandolo, S. & Tosatti, E. (2000). Physics of iron at earth's core conditions. Sci. 287, 1027.CrossRefGoogle ScholarPubMed
Lindl, J.D., Richard, P.A., Berger, L., Glendinning, S.G., Glenzer, S.H., Haan, S.W., Kauffman, R.L., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targetson the National Ignition Facility. Phys. Plasmas 11, 339.CrossRefGoogle Scholar
Lorenz, J.E.K.T., Remington, B.A., Pollaine, S., Colvin, J., Braun, D., Lasinski, B.F., Reisman, D., McNaney, J.M., Greenough, J.A., Wallace, R., Louis, H. & Kalantar, D. (2004). Laser-Driven Plasma Loader for Shockless Compression and acceleration of samples in the solid state. Phys. Rev. Lett. 92, 075002.Google Scholar
Lorenz, K.T., Edwards, M.J., Glendinning, S.G., Jankowski, A.F., McNaney, J., Pollaine, S.M. & Remington, B.A. (2005). Accessing ultrahigh-pressure, quasi-isentropic states of matter. Phys. Plasmas 12, 056309.CrossRefGoogle Scholar
McMillan, P.F. (2002). New materials from high-pressure experiments. Nat. Mat. 1, 19.CrossRefGoogle ScholarPubMed
McQueen, R.G., Fritz, J.N. & Morris, C.E. (1983). Shock Waves in Condensed Matter (Asay, J.R., Graham, R.A. and Straub, G.K., eds.), pp. 9598. Amsterdam: Elsevier.Google Scholar
Nardi, E., Maron, Y. & Hoffmann, D. (2009). Dynamic screening and charge state of fast ions in plasma and solids. Laser Part. Beams 27, 355361.CrossRefGoogle Scholar
Neal, T. (1976). Dynamic determinations of the Grüneisen coefficient in aluminum and aluminum alloys for densities up to 6 Mgm3. Phys. Rev. B 14, 5172.Google Scholar
Ni, P., Kulish, M., Mintsev, V., Nikolaev, D., Ternovoi, V., Hoffmann, D., Udrea, S., Hug, A., Tahir, N. & Varentsov, D. (2008). Temperature measurement of warm-densematter generated by intense heavy-ion beams. Laser Part. Beams 26, 583589.CrossRefGoogle Scholar
O'Keefe, J.D. & Ahrens, T.J. (1999). Complex craters: Relationship of stratigraphy and rings to impact conditions. J. Geophys. Res. 104, 27091.CrossRefGoogle Scholar
Reisman, D.B., Toor, A., Cauble, R.C., Hall, C.A., Asay, J.R., Knudson, M.D. & Furnish, M.D. (2000). Magnetically driven isentropic compression experiments on the Z accelerator. J. Appl. Phys. 89, 1625.CrossRefGoogle Scholar
Rothman, S.D., Davis, J.P., Maw, J., Robinson, C.M., Parker, K. & Palmer, J. (2005). Measurement of the principal isentropes of lead and leadantimony alloy to 400 kbar by quasiisentropic compression. J. Phys. D: Appl. Phys. 38, 733.CrossRefGoogle Scholar
Sauman, D., Chabrier, G., Wagner, D.J. & Xie, X. (2000). Modeling pressure-ionization of hydrogen in the contextof astrophysics. High Press. Res. 16, 331.CrossRefGoogle Scholar
Smith, R.F., Eggert, J.H., Jankowski, A., Celliers, P.M., Edwards, J., Gupta, Y.M., Asay, J.R. & Collins, G.W. (2007). Stiff response of aluminum under ultrafast shockless compression to 110 GPA. Phys. Rev. Lett. 98, 065701.CrossRefGoogle ScholarPubMed
Smith, R.F., Eggert, J.H., Saculla, M.D., Jankowski, A.F., Bastea, M., Hicks, D.G. & Collins, G.W. (2008). Ultrafast dynamic compression technique to study the kinetics of phase transformations in Bismuth. Phys. Rev. Lett. 101, 065701.Google Scholar
Solomatov, V.S. & Stevenson, D.J. (1994). Can sharp seismic discontinuities be caused by non-equilibrium phase transformations? Earth Planet. Sci. Lett. 125, 267.CrossRefGoogle Scholar
Spiller, P.J., Barth, W., Dahl, L., Eickhoff, H., Spaedtke, P. & Hollinger, R. (2006). Approaches to high intensities for FAIR. In Proc. of 10th European Part. Accel. Conf. EPAC, p. 24. Edinburgh, Scotland.Google Scholar
Swegle, J.W. & Grady, D.E. (1985). Shock viscosity and the prediction of shock wave rise times. J. Appl. Phys. 58, 692.Google Scholar
Swift, D.C. & Johnson, R.P. (2005). Quasi-isentropic compression by ablative laser loading: Response of materials to dynamic loading on nanosecond time scales. Phys. Rev. E 71, 066401.Google Scholar
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Kulish, M., Lomonosov, I.V., Mintsev, V., Ni, P., Nikolaev, D., Piriz, A.R., Shilkin, N., Spiller, P., Shutov, A., Temporal, M., Ternovoi, V., Udrea, S. & Varentsov, D. (2005). Proposal for the Study of thermophysical properties of high-energy-density matter using current and future heavy-ion accelerator facilities at GSI Darmstadt. Phys. Rev. Lett. 95, 035001.CrossRefGoogle Scholar
Varentsov, D., Fertman, A.D., Turtikov, V.I., Ulrich, A., Wieser, J., Fortov, V.E., Golubev, A.A., Hoffmann, D.H.H., Hug, A., Kulish, M., Mintsev, V., Ni, P.A., Nikolaev, D., Sharkov, B.Y., Shilkin, N. & Ternovoi, V.Y. (2008). Transverse optical diagnostics for intense focused heavy ion beams. Contrib. Plasma Phys. 48, 586.Google Scholar
Varentsov, D., Spiller, P., Tahir, N., Hoffmann, D., Constantin, C., Dewald, E., Jacoby, J., Lomonossow, I., Neuner, U., Shutov, A., Wieser, J., Udrea, S. & Bock, R. (2002). Energy loss dynamics of intense heavy ion beams interacting with solid targets. Laser Part. Beams 20, 485491.CrossRefGoogle Scholar
Varentsov, D., Ternovoi, V.Y., Kulish, M., Fernengel, D., Fertmand, A., Hugc, A., Menzel, J., Ni, P., Nikolaev, D.N., Shilkin, N., Turtikov, V., Udrea, S., Fortov, V.E., Golubev, A.A., Gryaznov, V.K., Hoffmann, D.H.H., Kimb, V., Lomonosov, V.I., Mintsev, V., Sharkov, B.Y., Shutov, A., Spiller, P., Tahir, N.A. & Wahl, H. (2006). High-energy-density physics experiments with intense heavy ion beams. Nucl. Instr. and Meth. A 577, 262.CrossRefGoogle Scholar
Weir, C.E., Lippincott, E.R., Valkenburg, A.V. & Bunting, E.N. (1959). Infrared studies in the 1- to 15-micron region to 30,000 atmospheres. J. Res. Natl. Bur. Stand. 63A, 5562.CrossRefGoogle ScholarPubMed
Zhang, J. & Weidner, D.J. (1999). Thermal equation of state of aluminum-enriched silicate-perovskite. Sci. 284, 782.CrossRefGoogle ScholarPubMed