Skip to main content Accessibility help
×
Home

Radiation loss from inertially confined degenerate plasmas

  • SHALOM ELIEZER (a1), PABLO T. LEÓN (a2), JOSÉ M. MARTINEZ-VAL (a2) and DIMITRI V. FISHER (a1)

Abstract

Bremsstrahlung is one of the most important energy loss mechanisms in achieving ignition, which is only possible above a threshold in temperature for a given fusion reaction and plasma conditions. A detailed analysis of the bremsstrahlung process in degenerate plasma points out that radiation energy loss is much smaller than the value given by the classical formulation. This fact seems not useful to relax ignition requirements in self-ignited targets, because it is only relevant at extremely high densities. On the contrary, it can be very positive in the fast ignition scheme, where the target is compressed to very high densities at a minimum temperature, before the igniting beamlet is sent in.

Copyright

Corresponding author

Address correspondence and reprint requests to: Shalom Eliezer, Soreq Nuclear Research Center, Yavne, 81800 Israel. eliezer@soreq.gov.il

References

Hide All

REFERENCES

Atzeni, S. (1995). Thermonuclear burn performance of volume-ignited and centrally ignited bare deuterium-tritium microspheres. Japan J. Appl. Phys. 43, 19801992.
Atzeni, S. (2002). Proc. Inertial Fusion Science and Applications 2001 (Tanaka, K.A., Meyerhofer, D.D. & Meyer-ter-Vehn, J., Eds.), p. 45. Paris: Elsevier.
Azechi, H., Jitsuno, T., Kanabe, T., Katayama, M., Mirna, K., Miyanaga, N., Nakai, M., Nakai, S., Nakaishi, H., Nakatsuka, M., Nishiguchi, A., Norrays, P.A., Setsuhara, Y., Takagi, M., Yamanaka, M. & Yamanaka, C. (1991). High-density compression experiments at ILE. Laser Part. Beams 9, 193207.
Bodner, S.E. (1981). Critical elements of high gain laser fusion. Fusion Energy 1, 221.
Boreham, B.W., Eliezer, S., Martinez-Val, J.M. et al. (1999). Beam matter interaction physics for fast ignitors. Fusion Eng. Des. 44, 215224.
Brueckner, K.A. & Jorna, S. (1973). Laser-driven fusion. Rev. Mod. Phys. 46, 325367.
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.
Deutsch, C., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1997). Interaction physics of the fast ignitor concept. Laser Part. Beams 15, 557564.
Eliezer, S., Ghatak, A. & Hora, H. (1986). An Introduction to Equations of State: Theory and Applications. Cambridge, UK: Cambridge University Press.
Eliezer, S. & Martinez-Val, J.M. (1998). Proton-boron-11 fusion reactions induced by heat-detonation burning waves. Laser Part. Beams 16, 581598.
Kato, Y., Kitagawa, Y., Tanaka, K.A., Kodama, R., Fujita, H., Kanabe, T., Jitsuno, T., Shiraga, H., Takabe, H., Murakami, M., Nishihara, K. & Mima, K. (1997). Plasma Phys. Control Fusion 39, A145A151.
Key, M.H. (2001). Fast track to fusion energy. Nature 412, 775776.
Kidder, R.E. (1974). Theory of homogeneous isentropic compression and its application to laser fusion. Nucl. Fusion 14, 5360.
Kidder, R.E. (1979). Laser-driven isentropic hollow-shell implosions: The problem of ignition. Nucl. Fusion 19, 223234.
Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G. et al. (2001). Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition. Nature 412, 798802.
Leon, P.T., Eliezer, S., Martinez-Val, J.M. & Piera, M. (2001). Fusion burning waves in degenerate plasmas. Phys. Lett. A 289, 135140.
Martinez-Val, J.M., Eliezer, S. & Piera, M. (1994). Volume ignition targets for heavy-ion inertial fusion. Laser Part. Beams 12, 681717.
Maynard, G. & Deutsch, C. (1982). Energy loss and straggling of ions with any velocity in dense plasmas at any temperature. Phys. Rev. A 26, 665668.
McCrory, R.L., Soures, J.M., Verdon, C.P., Marshall, F.J., Letzring, S.A., Skupsky, S., Kessler, T.J., Kremens, R.L., Knauer, J.P., Kim, H. Delettrez, J., Keck, R.L., &Bradley, D.K. (1988). Laser-driven implosion of thermonuclear fuel to 20 to 40 g cm−3m. Nature 335, 225229.
Meyer-ter-Vehn, J. (1982). On energy gain of fusion targets: The model of Kidder and Bodner improved. Nucl. Fusion 22, 561565.
Miyamoto, K. (1980). Plasma Physics for Nuclear Fusion. Cambridge, MA: The MIT Press.
More, R.M. (1993). Nuclear Fusion by Inertial Confinement. Atomic Physics in Dense Plasma (Verlade, G., Ronen, Y. & Martìnez-Val, J.M., Eds.), Boca Raton, FL: CRC Press.
Nakai, S. et al. (1991). Plasma Physics and Controlled Nuclear Fusion Research 1990, IAEA/CN-53/B-1-3, IAEA, Vienna.
Norreys, P.A., Allott, R., Clarke, R.J., Collier, J., Neely, D., Rose, S.J., Zepf, M., Santala, M., Bell, A.R., Krushelnick, K., Dangor, A.E., Woolsey, N.C., Evans, R.G., Habara, H., Norimatsu, T. & Kodama, R. (2000). Experimental studies of the advanced fast ignitor scheme. Phys. Plasmas 7, 37213726.
Piriz, A.R. & Sanchez, M.M. (1998). Analytic model for the dynamics of fast ignition. Phys. Plasmas 5, 27212726.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W. Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D., &Powell, H. (2001). Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.
Skupsky, S. (1977). Energy loss of ions moving through high-density matter. Phys. Rev. A 16, 727731.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.
Tahir, N.A. & Hoffmann, D.H.H. (1994). Development of high gain reduced tritium targets for inertial fusion. Fusion Eng. Des. 24, 413418.
Totsuji, H. (1985). Bremsstrahlung in high-density plasmas. Phys. Rev. A 32, 30053010.
Yaakobi, B., Smalyuk, V.A., Delettrez, J.A., Town, R.P.J., Marshall, F.J., Glebov, V.Yu., Petrasso, R.D., Soures, J.M., Meyerhofer, D.D. & Seka, W. (1999). Spherical implosion experiments on OMEGA: Measurements of the cold, compressed shell. Proc. IFSA 99 Conference, pp. 115121. Labaune, C., Hogan, W. & Tanaka, K.A. (Eds.) Paris: Elsevier.
Yamanaka, C. et al. (1986). Laser implosion of high-aspect-ratio targets produces thermonuclear neutron yields exceeding 1012 by use of shock multiplexing. Phys. Rev. Lett. 56, 15751578.
Yamanaka, C. & Nakai, S. (1986). Thermonuclear neutron yield to 1012 achieved with Gekko XII green laser. Nature 319, 757759.
Yamanaka, C. et al. (1987). High thermonuclear neutron yields by shock multiplexing implosion with Gekko XII green laser. Nucl. Fusion 27, 1930.

Keywords

Radiation loss from inertially confined degenerate plasmas

  • SHALOM ELIEZER (a1), PABLO T. LEÓN (a2), JOSÉ M. MARTINEZ-VAL (a2) and DIMITRI V. FISHER (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed