Skip to main content Accessibility help
×
Home

Production of high-intensity proton fluxes by a 2ω Nd:glass laser beam

  • J. Badziak (a1), S. Jabłoński (a1), P. Parys (a1), A. Szydłowski (a2), J. Fuchs (a3) and A. Mancic (a3)...

Abstract

The results of numerical and experimental studies of high-intensity proton beam generation using a 2ω or 1ω Nd:glass laser beam irradiating a thin hydrogen-rich target are reported. The effect of the laser wavelength (λ), intensity (IL) and pulse duration as well as the target thickness, and the preplasma density gradient scale length on proton beam parameters, and the laser-protons energy conversion efficiency were examined by particle-in-cell simulations. Both the simulations and measurements, performed on the LULI 100 TW laser facility at IL up to 2 × 1019W/cm2, prove that at the ILλ2 product fixed, the 2ω laser driver can produce proton beams of intensity, current density and energy fluence significantly higher than the ones which could be achieved using the 1ω driver. In particular, at ILλ2~(0.5–1) × 1020 Wcm−2 µm2 the 2ω picosecond driver makes it possible to generate multi-MeV proton beams of intensity and current density in excess of 1021W/cm2 and 1014A/cm2, respectively, with the conversion efficiency above 10%.

Copyright

Corresponding author

Address correspondence and reprint requests to: J. Badziak, Institute of Plasma Physics and Laser Microfusion, EURATOM Association, 23 Hery Street, 01-497 Warsaw, Poland. E-mail: badziak@ifpilm.waw.pl

References

Hide All
Allen, M., Patel, P.K., Mackinnon, A., Price, D., Wilks, S. & Morse, E. (2004). Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils. Phys. Rev. Lett. 93, 265004/1–4.
Badziak, J., Makowski, J., Parys, P., Ryć, L., Wołowski, J., Woryna, E. & Vankov, A.B. (2001). Intensity-dependent characteristics of a picosecond laser-produced Cu plasma. J. Phys. D: Appl. Phys. 34, 18851891.
Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2004). Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction. Plasma Phys. Contr. Fusion 46, B541B555.
Badziak, J., Głowacz, S., Jabłoński, S., Parys, P., Wołowski, J. & Hora, H. (2005). Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 23, 143147.
Badziak, J., Jabłoński, S. & Głowacz, S. (2006). Generation of collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities. Appl. Phys. Lett. 89, 061504/1–3.
Badziak, J. (2007). Laser-driven generation of fast particles. Opto-Electron. Rev. 15, 1.
Badziak, J., Jabłoński, S. & Wołowski, J. (2007). Progress and prospect of fast ignition of ICF targets. Plasma Phys. Contr. Fusion 49, B651B666.
Badziak, J., Jabłoński, S., Parys, P., Rosiński, M., Wołowski, J., Szydłowski, A., Antici, P., Fuchs, J. & Mancic, A. (2008). Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys. 104 063310/1–6.
Borghesi, M., Fuchs, J., Bulanov, S.V., Mackinnon, A.J., Patel, P.K. & Roth, M. (2006). Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412438.
Denevit, J. (1992). Absorption of high-intensity subpicosecond laser on solid density targets. Phys. Rev. Lett. 69, 30523055.
Fernandez, J.C., Honrubia, J.J., Albright, B.J., Flippo, K.A., Gautier, D. Cort, Hegelich, B.M., Schmitt, M.J., Temporal, M. & Yin, L. (2009). Progress and prospects of ion-driven fast ignition. Nucl. Fusion 49, 065004/1–8.
Foord, M.E., Patel, P.K., Mackinnon, A.J., Hatchett, S.P., Key, M.H., Lasinski, B., Town, R.P.J., Tabak, M. & Wilks, S.C. (2007). MeV proton generation and efficiency from an intense laser irradiated foil. High Energy Dens. Phys. 3, 365370.
Fuchs, J., Sentoku, Y., d'Humières, E., Cowan, T.E., Cobble, J., Audebert, P., Kemp, A., Nikroo, A., Antici, P., Brambrink, E., Blazevic, A., Campbell, E.M., Fernández, J.C., Gauthier, J.C., Geissel, M., Hegelich, M., Karsch, S., Pepescu, H., Renard-LeGalloudec, N., Roth, M., Schreiber, J., Stephens, R. & Pépin, H. (2007). Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils. Phys. Plasmas 14, 053105/1–13.
Habara, H., Kodama, R., Sentoku, Y., Izumi, N., Kitagawa, Y., Tanaka, K.A., Mima, K. & Yamanaka, T. (2003). Momentum distribution of accelerated ions in ultra-intense laser-plasma interactions via neutron spectroscopy. Phys. Plasmas 10, 37123716.
Hegelich, B.M., Albright, B., Audebert, P., Blazevic, A., Brambrink, E., Cobble, J., Cowan, T., Fuchs, J., Gauthier, J.C., Gautier, C., Geissel, M., Habs, D., Johnson, R., Karsch, S., Kemp, A., Letzring, S., Roth, M., Schramm, U., Schroeiber, J., Witte, K.J. & Fernandez, J.C. (2005). Spectral properties of laser accelerated mid-Z MeV/u ion beams Phys. Plasmas 12, 056314/1–5.
Holkundkar, A.R. & Gupta, N.K. (2008). Effect of initial plasma density on laser induced ion acceleration. Phys. Plasmas 15, 123104/1–10.
Hora, H., Badziak, J., Boody, F., Hopfel, R., Jungwirth, K., Kralikova, B., Krasa, J., Laska, L., Parys, P., Perina, P., Pfejfer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Optics Commun. 207, 333338.
Lee, K., Park, S.H., Cha, Y.-H., Lee, J.Y., Lee, Y.W.,Yea, K.-H. & Jeong, Y.U. (2008). Generation of intense proton beams from plastic targets irradiated by an ultraintense laser pulse. Phys. Rev. E 78, 056403/1–4.
Liseykina, T.V. & Macchi, A. (2007). Features of ion acceleration by circularly polarized laser pulses. Appl. Phys. Lett. 91, 171702/1–3.
Liseykina, T.V., Borghesi, M., Macchi, A. & Tuveri, S. (2008). Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Contr. Fusion 50, 124033/1–9.
McKenna, P., Lindau, F., Lundh, O., Carroll, D.C., Clarke, R.J., Ledingham, K.W.D., McCanny, T., Nelly, D., Robinson, A.P.L., Robson, L., Simpson, P.T., Wahistrom, C-G. & Zepf, M. (2007). Low-and medium-mass ion acceleration driven by petawatt laser plasma interactions. Plasma Phys. Contr. Fusion 49, B223B231.
Pukhov, A. (2001). Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. Phys. Rev. Lett. 86, 35623565.
Robinson, A., Zepf, M., Kar, S., Evans, R.G. & Bellei, C. (2008). Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10, 033034/1–13.
Robson, L., Simpson, P.T., Clarke, R.J., Ledingham, K.W.D., Lindau, F., Lundh, O., McCanny, T., Mora, P., Neely, D., Wahlstrom, C.G., Zepf, M. & McKenna, P. (2007). Scaling of proton acceleration driven by petawatt-laser-plasma interactions. Nature Physics 3, 58/1–4.
Sadighi-Bonabi, R., Hora, H., Riazi, Z.,Yazdani, E. & Sadighi, S.K. (2010). Generation of plasma blocks accelerated by nonlinear forces from ultraviolet KrF laser pulses for fast ignition. Laser Part. Beams 28, 101107.
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Gauthier, J.C., Audebert, P., Fuchs, J., Meyerter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. Spec. Top. AB 5, 061301/1–8.
Sentoku, Y., Bychenkov, V.Y., Flippo, K., Maksimchuk, A., Mima, A., Mourou, G., Sheng, Z.M. & Umstadter, D. (2002). High + energy ion generation in interaction of short laser pulse with high-density plasma. Appl. Phys. B 74, 207215.
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 86, 17691772.
Szydłowski, A., Badziak, J., Fuchs, J., Kubkowska, M., Parys, P., Rosiński, M., Suchańska, R., Wołowski, J., Antici, P. & Mancic, A. (2009). Application of solid-state nuclear track detectors of the CR-39/PM-355 type for measurements of energetic protons emitted from plasma produced by an ultra-intense laser. Radiat. Meas. 44, 881884.
Temporal, M., Honrubia, J.J. & Atzeni, S. (2002). Numerical study of fast ignition of ablatively imploded deuterium-tritium fusion capsules by ultra-intense proton beams. Phys. Plasmas 9, 30983107.
Umstadter, D. (2001). Review of physics and applications of relativistic plasmas driven by ultra-intense lasers. Phys. Plasmas 8, 17741785.
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 13831386.
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.
Xu, M.H., Li, Y.T., Yuanet, X.H., Yu, Q.Z., Wang, S.J., Zhao, W., Wen, X.L., Wang, G.C., Jiao, C.Y., He, Y.L., Zhang, S.G., Wang, X.X.Huang, W.Z.Gu, Y.G. & Zhang, J. (2006). Effects of shock waves on spatial distribution of proton beams in ultrashort laser-foil interactions. Phys. Plasmas 13, 104507/1–4.
Yang, X.H., Ma, Y.Y., Shao, F.Q., Xu, H., Yu, M.Y., Gu, Y.Q., Yu, T.P., Yin, Y., Tian, C.L. & Kawata, S. (2010). Collimated proton beam generation from ultraintense laser-irradiated target. Laser Part. Beams 28, 319325.
Yin, L., Albright, B.J., Hegelich, B.M. & Fernandez, J.C. (2006). GeV laser ion acceleration from ultrathin targets: The laser break-out afterburner. Laser Part. Beams 24, 291297.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed