Skip to main content Accessibility help

Present and future perspectives for high energy density physics with intense heavy ion and laser beams

  • D.H.H. HOFFMANN (a1) (a2), A. BLAZEVIC (a2), P. NI (a2), O. ROSMEJ (a1), M. ROTH (a2), N.A. TAHIR (a1), A. TAUSCHWITZ (a1), S. UDREA (a2), D. VARENTSOV (a2), K. WEYRICH (a1) and Y. MARON (a3)...


Intense heavy ion beams from the Gesellschaft für Schwerionenforschung (GSI, Darmstadt, Germany) accelerator facilities, together with two high energy laser systems: petawatt high energy laser for ion experiments (PHELIX) and nanosecond high energy laser for ion experiments (NHELIX) are a unique combination to facilitate pioneering beam-plasma interaction experiments, to generate and probe high-energy-density (HED) matter and to address basic physics issues associated with heavy ion driven inertial confinement fusion. In one class of experiments, the laser will be used to generate plasma and the ion beam will be used to study the energy loss of energetic ions in ionized matter, and to probe the physical state of the laser-generated plasma. In another class of experiments, the intense heavy ion beam will be employed to create a sample of HED matter and the laser beam, together with other diagnostic tools, will be used to explore the properties of these exotic states of matter. The existing heavy ion synchrotron facility, SIS18, deliver an intense uranium beam that deposit about 1 kJ/g specific energy in solid matter. Using this beam, experiments have recently been performed where solid lead foils had been heated and a brightness temperature on the order of 5000 K was measured, using a fast multi-channel pyrometer that has been developed jointly by GSI and IPCP Chernogolovka. It is expected that the future heavy ion facility, facility for antiprotons and ion research (FAIR) will provide compressed beam pulses with an intensity that exceeds the current beam intensities by three orders of magnitude. This will open up the possibility to explore the thermophysical and transport properties of HED matter in a regime that is very difficult to access using the traditional methods of shock compression. Beam plasma interaction experiments using dense plasmas with a Γ-parameter between 0.5 and 1.5 have also been carried out. This dense Ar-plasma was generated by explosively driven shockwaves and showed enhanced energy loss for Xe and Ar ions in the energy range between 5.9 to 11.4 MeV.


Corresponding author

Address correspondence and reprint requests to: D. H. H. Hoffman, Gesellschaft für Schwerionenforschung (GSI), Plasmaphysik, Planckstrasse 1, Darmstadt D-64291, Germany. E-mail:


Hide All


Bakhmetjev, I.E., Fertman, A.D., Golubev, A.A., Kantsyrev, A.V., Luckjashin, V.E., Sharkov, B.Y., Turtikov, V.I., Kunin, A.V., Vatulin, V.V., Zhidkov, N.V., Baldina, E.G., Neuner, U., Wieser, J., Jacoby, J. & Hoffmann, D.H.H. (2003). Research into the advanced experimental methods for precision ion stopping range measurements in matter. Laser Part. Beams 21, 16.
Barnard, J.J., Ahle, L.E., Bieniosek, F.M., Celata, C.M., Davidson, R.C., Henestroza, E., Friedman, A., Kwan, J.W., Logan, B.G., Lee, E.P., Lund, S.M., Meier, W.R., Sabbi, G.L., Seidl, P.A., Sharp, W.M., Shuman, D.B., Waldron, W.L., Qin, H. & Yu, S.S. (2003). Integrated experiments for heavy ion fusion. Laser Part. Beams 21, 553560.
Bauer, D. (2003). Plasma formation through field ionization in intense laser matter interaction. Laser Part. Beams 21, 489.
Borisenko, N.G., Akunets, A.A., Bushuev, V.S., Dorotovtsev, V.M. & Merkuliev, Yu.A. (2003). Motivation and fabrication methods for inertial confinement fusion and inertial fusion energy targets. Laser Part. Beams 21, 505.
Constantin, C., Dewald, E., Niemann, C., Hoffmann, D.H.H., Udrea, S., Varentsov, D., Jacoby, J., Funk, U.N., Neuner, U. & Tauschwitz, A. (2004). Cold compression of solid matter by intense heavy-ion-beam generated pressure waves. Laser Part. Beams 22, 59.
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115.
Dietrich, K.G., Hoffmann, D.H.H., Boggasch, E., Jacoby, J., Wahl, H., Elfers, M., Haas, C.R., Dubenkov, V.P. & Golubev, A.A. (1992). Charge state of fast heavy ions in a hydrogen plasma. Phys. Rev. Lett. 69, 3623.
Henning, W.F. (2001). An international accelerator facility for beams of ions and antiprotons. GSI report.
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy loss of heavy ions in a plasma target. Phys. Rev. A. 42, 2313.
Hoffmann, D.H.H., Fortov, V.E., Lomonosov, I.V., Mintsev, V., Tahir, N.A., Varentsov, D. & Wieser, J. (2002). Unique capabilities of an intense heavy ion beam as a tool for equation of state studies. Phys. Plasmas 9, 3651.
Hofmann, I., Boine-Frankenheim, I., Hasse, R.W., Liu, Y. & Spiller, P. (2001). In-flight imaging of heavy ion driven plasma targets. GSI-Report No. GSI-2001-4, 29.
Jacoby, J., Laux, W., Müller, R.W., Wahl, H., Weyrich, K., Boggasch, E., Heimrich, B., Stöckl, C., Wetzler, H. & Miyamoto, S. (1995). Stopping of Heavy Ions in Hydrogen Plasma. Phys. Rev. Lett. 74, 1550.
Kong, H.J., Lee, S.K. & Lee, D.W. (2005a). Beam combined laser fusion driver with high power and high repetition rate using stimulated Brillouin scattering phase conjugation mirrors and self-phase-locking. Laser Part. Beams 23, 5559.
Kong, H.J., Lee, S.K. & Lee, D.W. (2005b). Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique. Laser Part. Beams 23, 105109.
Mulser, P. & Bauer, D. (2004). Fast ignition of fusion pellets with superintense lasers: Concepts, problems and prospectives. Laser Part. Beams 22, 5.
Mulser, P. & Schneider, R. (2004). On the inefficiency of hole boring in fast ignition. Laser Part. Beams 22, 157.
Neumayer, P., Seelig, W., Cassou, K., Klisnick, A., Ros, D., Ursecu, D., Kuehl, T., Borneis, S., Gaul, E., Geithner, W., Haefner, C. & Wiewior, P. (2004). Transient collisionally excited x-ray laser in nickel-like zirconium pumped with the PHELIX facility. Appl. Phys. B. Lasers Optics 78, 957.
Neumayer, P. (2005). Status of PHELIX laser and first experiments. Laser Part. Beams 23. In press.
Neuner, U., Bock, R., Roth, M., Spiller, P., Constantin, C., Funk, U.N., Geissel, M., Hakuli, S., Hoffmann, D.H.H., Jacoby, J., Kozyreva, A., Tahir, N.A., Udrea, S., Varentsov, D. & Tauschwitz, A. (2000). Shaping of intense ion beams into hollow cylindrical form. Phys. Rev. Lett. 85, 4518.
Niemann, C. et al. (2003). Diagnostics of discharge channels for neutralized chamber transport in heavy ion fusion. Laser Part. Beams 21, 1315.
Ogawa, M., Yoshida, M., Nakajima, M., Hasegawa, J., Fukata, S., Horioka, K. & Oguri, Y. (2003). High-current laser ion source based on low-power. laser. Laser Part. Beams 21, 633.
Piriz, A.R., Tahir, N.A., Hoffmann, D.H.H. & Temporal, M. (2003). Generation of a hollow ion beam: Calculation of the rotation frequency required to accommodate symmetry constraint. Phys. Rev. E 67, 017501.
Ratzinger, U., Liebermann, H., Meusel, O., Podlech, H., Tiede, R., Barth, W. & Vinzenz, W. (2003). High current ion beam RF acceleration and perspectives for an inertial fusion driver. Laser Part. Beams 21, 627.
Rosmej, O. et al. (2005). Projectile spectroscopy of heavy ion beams. Laser Part. Beams 23. In Press.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C. et al. (2001). Fast ignition by intense laser accelerated proton beams. Phys. Rev. Lett. 86, 436.
Roth, M. et al. (2005). Laser accelerated ions and electron transport in ultra-intense laser-matter interaction. Laser Part. Beams 23, 9389.
Schopper, R., Ruhl, H., Kunzi, T.A. & Lesch, H. (2003). Kinetic simulation of the coherent radio emission from pulsars. Laser Part. Beams 21, 109.
Tahir, N.A., Shutov, S., Varentsov, D., Spiller, P., Udrea, S., Hoffmann, D.H.H., Lomonosov, I.V., Wieser, J., Kirk, M., Piriz, R., Fortov, V.E. & Bock, R. (2003). The influence of the equation of state of matter and ion beam characteristics on target heating and compression. Phys. Rev. Spec. Top. 6, 020101.
Tahir, N.A., Deutsch, C., Fortov, V.E., Gryaznov, V., Hoffmann, D.H.H., Juranek, H., Lomonosov, I.V., Piriz, A.R., Redmer, R., Shutov, A., Spiller, P., Temporal, M., Udrea, S. & Varentsov, D. (2003a). Intense heavy ion beams as a tool to induce high energy density states in matter. Contrib. Plasma Phys. 5, 373.
Tahir, N.A., Juranek, H., Shutov, A., Redmer, R., Temporal, M., Udrea, S., Hoffmann, D.H.H., Deutsch, C., Lomonosov, I.V. & Fortov, V.E. (2003b). Influence of the equation of state on the compression and heating of hydrogen. Phys. Rev. B. 67, 184101.
Tahir, N.A., Shutov, A., Varentsov, D., Hoffmann, D.H.H., Spiller, P., Lomonosov, I., Wieser, J., Jacoby, J. & Fortov, V.E. (2002). High energy density matter research at GSI Darmstadt using intense heavy ion beams. Laser Part. Beams 20, 393.
Temporal, M., Piriz, A.R., Grandjouan, N., Tahir, N.A. & Hoffmann, D.H.H. (2003). Numerical analysis of a multilayers cylindrical target compression driven by a rotating intense heavy ion beam. Laser Part. Beams 21, 609.
Varentsov, D., Tahir, N.A., Lomonossov, I.V., Hoffmann, D.H.H., Wieser, J. & Fortov, V.E. (2003). Energy loss dynamics of an intense uranium beam interacting with solid neon for equation of state studies. Euro Phys. Lett. 64, 5763.
Weyrich, K., Hoffmann, D.H.H., Wahl, H., Noll, R., Haas, R., Kunze, H., Bimbot, R., Gardes, D., Rivet, M.F., Deutsch, C. & Fleurier, C. (1989). Energy loss of heavy ions in a hydrogen discharge plasma. Nucl. Instr. Meth. 278, 52.
Zwicknagel, G. et al. (1999). Phys. Rep. 309, 117.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed