Skip to main content Accessibility help
×
×
Home

Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition

  • T. Pisarczyk (a1), S.Yu. Gus'kov (a2) (a3), O. Renner (a4), N.N. Demchenko (a2), Z. Kalinowska (a1), T. Chodukowski (a1), M. Rosinski (a1), P. Parys (a1), M. Smid (a4) (a5), J. Dostal (a6), J. Badziak (a1), D. Batani (a7), L. Volpe (a7), E. Krousky (a6), R. Dudzak (a6), J. Ullschmied (a6), H. Turcicova (a4), J. Hrebicek (a4), T. Medrik (a4), M. Pfeifer (a6), J. Skala (a6), A. Zaras-Szydlowska (a1), L. Antonelli (a7), Y. Maheut (a7), S. Borodziuk (a1), A. Kasperczuk (a1) and P. Pisarczyk (a8)...

Abstract

This paper reports on properties of a plasma formed by sequential action of two laser beams on a flat target, simulating the conditions of shock-ignited inertial confinement fusion target exposure. The experiments were performed using planar targets consisting of a massive copper (Cu) plate coated with a thin plastic (CH) layer, which was irradiated by the 1ω PALS laser beam (λ = 1.315 μm) at the energy of 250 J. The intensity of the fixed-energy laser beam was scaled by varying the focal spot radius. To imitate shock ignition conditions, the lower-intensity auxiliary 1ω beam created CH-pre-plasma which was irradiated by the main beam with a delay of 1.2 ns, thus generating a shock wave in the massive part of the target. To study the parameters of the plasma treated by the two-beam irradiation of the targets, a set of various diagnostics was applied, namely: (i) Two-channel polaro-interferometric system irradiated by the femtosecond laser (~40 fs), (ii) spectroscopic measurements in the X-ray range, (iii) two-dimensional (2D)-resolved imaging of the Kα line emission from Cu, (iv) measurements of the ion emission by means of ion collectors, and (v) measurements of the volume of craters produced in a massive target providing information on the efficiency of the laser energy transfer to the shock wave. The 2D numerical simulations have been used to support the interpretation of experimental data. The general conclusion is that the fraction of the main laser beam energy deposited into the massive copper at two-beam irradiation decreases in comparison with the case of pre-plasma. The reason is that the pre-formed and expanding plasma deteriorates the efficiency of the energy transfer from the main laser pulse to a solid part of the targets by means of the fast electrons and the wave of an electron thermal conductivity.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Pre-plasma effect on laser beam energy transfer to a dense target under conditions relevant to shock ignition
      Available formats
      ×

Copyright

Corresponding author

Address correspondence and reprint requests to: Tadeusz Pisarczyk, Institute of Plasma Physics and Laser Microfusion, 23 Hery St., 01-498 Warsaw, Poland. E-mail: tadeusz.pisarczyk@ifpilm.pl

References

Hide All
Antonelli, L., Batani, D., Patria, A., Ciricosta, O., Cecchetti, C.A., Koester, P., Labate, L., Giulietti, A., Gizzi, L.A., Moretti, A., Richetta, M., Giuffrida, L., Torissi, L., O'dell, T., Kozlova, M., Nejdl, J., Sawicka, M., Margarone, D., Rus, B., Schurtz, G., Ribeyre, X., Lafon, M. & Spindloe, C. (2011). Laser-plasma coupling in the shock-ignition intensity regime. Acta Tech. CSAV 56, T57T69.
Batani, D., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Chodukowski, T., Consoli, F., Cristoforetti, G., De Angelis, R., Dudzak, R., Folpini, G., Giuffrida, L., Gizzi, L.A., Kalinowska, Z., Koester, P., Krousky, E., Krus, M., Labate, L., Levato, T., Maheut, Y., Malka, G., Margarone, D., Marocchino, A., Nejdl, J., Nicolai, P., O'DELL, T., Pisarczyk, T., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Sawicka, M., Schiavi, A., Skala, J., Smid, M., Spindloe, C., Ullschmied, J., Velyhan, A. & Vinci, T. (2014a). Generation of high pressure shocks relevant to the shock-ignition intensity regime. Phys. Plasmas 21, 032710.
Batani, D., Baton, S., Casner, A., Depierreux, S., Hohenberger, M., Klimo, O., Koenig, M., Labaune, C., Ribeyre, X., Rousseaux, C., Schurtz, G., Theobald, W. & Tikhonchuk, V.T. (2014b). Physical issues in shock ignition. Nucl. Fusion 54, 054009.
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density (2007). Phys. Rev. Lett. 98, 155001.
Borodziuk, S., Kasperczuk, A., Pisarczyk, T., Gus'kov, S.Yu., Ullschmied, J., Kralikova, B., Rohlena, K., Skala, J., Kalal, M. & Pisarczyk, P. (2004). Application of laser simulation method for the analysis of crater formation experiment on PALS laser. Opt. Appl. 34, 31.
Burrus, C.S. (2008). Fast Fourier Transforms. Connexions, Rice University, Houston, Texas.
Gus'kov, S.Yu., Borodziuk, S., Kalal, M., Kasperczuk, A., Kralikova, B., Krousky, E., Limpouch, J., Masek, K., Pisarczyk, P., Pisarczyk, T., Pfeifer, M., Rohlena, K., Skala, J. & Ullschmied, J. (2004). Generation of shock waves and formation of crater in a solid material irradiated by a short laser pulse. Quantum Electron. 34, 989.
Gus'kov, S.Yu., Demchenko, N.N., Kasperczuk, A., Pisarczyk, T., Kalinowska, Z., Chodukowski, T., Renenr, O., Smid, M., Krousky, E., Pfeifer, M., Skala, J., Ullschmied, J. & Pisarczyk, P. (2014). Laser-driven ablation through fast electrons in PALS- experiment at the laser radiation intensity of 1–50 PW/cm2. Laser Part. Beams 32, 177915.
Gus'kov, S.Yu., Kasperczuk, A., Pisarczyk, T., Borodziuk, S., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J. & Pisarczyk, P. (2007). Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse. J. Exp. Theor. Phys. 105(4), 793802.
Gus'kov, S.Yu., Ribeyre, X., Touati, M., Feugeas, J.L., Nicolae, Ph. & Tikhonchuk, V.T. (2012). Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett. 102, 255004.
Gus'kov, S.Yu., Zverev, V.V. & Rozanov, V.B. (1983). Steady-state model of the corona of spherical targets allowing for energy transfer by fast electrons. Quantum Electron. 13, 498.
Kalal, M. & Nugent, K.A. (1988). Abel inversion using fast Fourier transforms. Appl. Opt. 27, 1956.
Kalinowska, Z., Kasperczuk, A., Pisarczyk, T., Chodukowski, T., Gus'kov, S.Yu., Demchenko, N.N., Ullschmied, J., Krousky, E., Pfeifer, M., Skala, J. & Pisarczyk, P. (2012). Investigations of mechanisms of laser radiation absorption at PALS. Nukleonika 57, 227.
Kasperczuk, A. & Pisarczyk, T. (2001). Application of automated interferometric system for investigation of the behaviour of a laser produced plasma in strong external magnetic fields. Opt. Appl. XXXI, 571597.
Koester, P., Antonelli, L., Atzeni, S., Badziak, J., Baffigi, F., Batani, D., Cecchetti, C.A., Chodukowski, T., Consoli, F., Cristoforetti, G., De Angelis, R., Folpini, G., Gizzi, L.A., Kalinowska, Z., Krousky, E., Kucharik, M., Labate, L., Levato, T., Liska, R., Malka, G., Maheut, Y., Marocchino, A., O'DELL, T., Parys, P., Pisarczyk, T., Raczka, P., Renner, O., Rhee, Y.J., Ribeyre, X., Richetta, M., Rosinski, M., Ryc, L., Skala, J., Schiavi, A., Schurtz, G., Smid, M., Spindloe, C., Ullschmied, J., Wolowski, J. & Zaras, A. (2013). Recent results from experimental studies on laser-plasma coupling in a Shock Ignition relevant regime. Plasma Phys. Controll. Fusion 55, 124045.
Lebo, I.G., Demchenko, N.N., Iskakov, A.B., Limpouch, J., Rozanov, V.B. & Tishkin, V.F. (2004). Simulation of high-intensity laser – plasma interactions by use of the 2D Lagrangian code ATLANT-HE. Laser Part. Beams 22, 267273.
Macfarlane, J.J., Golovkin, I.E., Wang, P., Woodruff, P.R. & Pereyra, N.A. (2007). SPECT3D – A multi-dimensional collisional-radiative Code for generating diagnostic signatures based on hydrodynamics and PIC simulation output. High Energy Density Phys. 3, 181.
Morace, A. & Batani, D. (2010). Spherically bent crystal for X-ray imaging of laser produced plasmas. Nucl. Instrum. Methods A 623, 797.
Nicolai, P., Feugeas, J.L., Toutati, M., Ribeyre, X., Gus'kov, S.Yu. & Tikhonchuk, V. (2014). Deleterious effects of nonthermal electrons in shock ignition concept. Phys. Rev. E 89, 033107.
Scherbakov, V.A. (1983). On the expediency of making double-pulse lasers for laser thermonuclear fusion. Sov. J. Plasma Phys. 9, 240.
Smid, M., Antonelli, L. & Renner, O. (2013). X-ray spectroscopic characterization of shock-ignition-relevant plasmas. Acta Polytech. 53, 233.
Perkins, L.J., Betti, R., La Fortune, K.N. & Williams, W.H. (2009). Shock ignition – a new approach to high gain inertial confinement fusion on the National Ignition Facility. Phys. Rev. Lett. 103, 045004.
Pisarczyk, T., Gus'kov, S.Yu., Kalinowska, Z., Badziak, J., Batani, D., Antonelli, L., Folpini, G., Maheut, Y., Baffigi, F., Borodziuk, S., Chodukowski, T., Cristoforetti, G., Demchenko, N.N., Gizzi, L.A., Kasperczuk, A., Koester, P., Krousky, E., Labate, L., Parys, P., Pfeifer, M., Renner, O., Smid, M., Rosinski, M., Skala, J., Dudzak, R., Ullschmied, J. & Pisarczyk, P. (2014). Pre-plasma effect on energy transfer from laser beam to shock wave generated in solid target. Phys. Plasmas 21, 012708.
Podorov, S.G., Renner, O., Wehrhan, O. & Furster, E. (2001). Optimized polychromatic x-ray imaging with asymmetrically cut bent crystals. J. Phys. D: Appl. Phys. 34, 2363.
Ribeyre, X., Schurtz, G., Lafon, M., Galera, S. & Weber, S. (2009). Shock ignition: modelling and target design robustness. Plasma Phys. Controll. Fusion 51, 015013.
Theobald, W., Betti, R., Stoeckl, C., Aanderson, K.S., Delettrez, J.A., Glebov, V.Y., Goncharov, V.N., Marshall, F.J., Maywar, D.N., Mccrory, R.L., Meyerhofer, D.D., Radha, P.B., Sangster, T.C., Seka, W., Shvarts, D., Smalyuk, V.A., Solodov, A.A., Yaakobi, B., Zhou, C.D., Frenje, J.A., Li, C.K., Siguin, F.H., Petrasso, R.D. & Perkins, L.J. (2008). Initial experiments on the shock-ignition inertial confinement fusion concept. Phys. Plasmas 15, 056306.
Theobald, W., Nora, R., Lafon, M., Casner, A., Ribeyre, X., Anderson, K.S., Betti, R., Delettrez, J.A., Frenje, J.A., Glebov, V.Y., Gotchev, O.V., Hohenberger, M., Hu, S.X., Marshall, F.J., Meyerhofer, D.D., Sangster, T.C., Schurtz, G., Seka, W., Smalyuk, V.A., Stoeckl, C. & Yaakobi, B. (2012). Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA. Phys. Plasmas 19, 102706.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Laser and Particle Beams
  • ISSN: 0263-0346
  • EISSN: 1469-803X
  • URL: /core/journals/laser-and-particle-beams
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed