Skip to main content Accessibility help
×
Home

Plasma rotation with circularly polarized laser pulse

  • Z. Lécz (a1), A. Andreev (a1) (a2) and A. Seryi (a3)

Abstract

The efficient transfer of angular orbital momentum from circularly polarized laser pulses into ions of solid density targets is investigated with different geometries using particle-in-cell simulations. The detailed electron and ion dynamics presented focus upon the energy and momentum conversion efficiency. It is found that the momentum transfer is more efficient for spiral targets and the maximum value is obtained when the spiral step is equal to twice the laser wavelength. This study reveals that the angular momentum distribution of ions strongly depends up on the initial target shape and density.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Plasma rotation with circularly polarized laser pulse
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Plasma rotation with circularly polarized laser pulse
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Plasma rotation with circularly polarized laser pulse
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Address correspondence and reprint requests to: Zsolt Lécz, ELI-ALPS, ELI-HU Nkft, Dugonics square 13., 6720 Szeged, Hungary. E-mail: Zsolt.Lecz@eli-alps.hu

References

Hide All
Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C. & Woerdman, J.P. (1992). Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 81858189.
Andreev, A.A. & Platonov, K.Yu. (2013). Generation of electron nanobunches and short-wavelength radiation upon reflection of a relativistic-intensity laser pulse from a finite-size target. Opt. Spectros. 114, 788797.
Beijersbergen, M.W., Coerwinkel, R.P.C., Kristensen, M., Woerdman, J.P. (1994). Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321327.
Bulanov, S.V., Esirkepov, T.Zh., Habs, D., Pegoraro, F. & Tajima, T. (2009). Relativistic laser–matter interaction and relativistic laboratory astrophysics. Eur. Phys. J. D 55, 483507.
Hernandez-Gracia, C., Picón, A., Plaja, L. & Román, J.S. (2013). Attosecond extreme ultraviolet vortices from high-order harmonic generation. Phys. Rev. Lett. 111, 083602.
Jha, P., Saroch, A., Mishra, R.K., & Upadhyay, A.K. (2012). Laser wakefield acceleration in magnetized plasma. Phys. Rev. Sp. Top. Accel. Beams 15, 081301.
Macchi, A., Veghini, S., Pegoraro, F. (2009). Light sail acceleration reexamined. Phys. Rev. Lett. 103, 085003.
Mendonca, J.T., Thidé, B. & Then, H. (2009). Stimulated Raman and Brillouin backscattering of collimated beams carrying orbital angular momentum. Phys. Rev. Lett. 102, 185005.
Naseri, N., Bychenkov, V.Yu. & Rozmus, W. (2010). Axial magnetic field generation by intense circularly polarised laser pulses in underdense plasmas. Phys. Plasmas 17, 083109.
Naumova, N.M., Hou, B., Mourou, G., Nees, J.A. & Sokolov, I.V. (2004 a). Relativistic generation of isolated attosecond pulses in a λ3 focal volume. Phys. Rev. Lett. 92, 063902.
Naumova, N.M., Maksimchuk, A., Mourou, G., Nees, J., Sokolov, I. & Yanovsky, V. (2004 b). Attosecond electron bunches. Phys. Rev. Lett. 93, 195003.
Nieter, C. & Cary, J.R. (2004). Vorpal: A versatile plasma simulation code. J. Comput. Phys. 196 (2) 448473.
Seryi, A. (2014). Laser and plasma accelerator workshop 2013 (Goa, India, 2–6 September 2013) Plasma Phys. Control. Fusion 56, 080301.(unpublished presentation of the author).
Takayuki, A. & Keishiro, N. (1987). Current neutralization of ion beam rotating and propagating in plasma. Laser Part. Beams 5, 481486.
Takayuki, A. & Keishiro, N. (1988). Numerical experiment for focus of rotating and propagating lib in plasma: Quasi-neutral approximation. Laser Part. Beams 6, 737750.
Yin, S., Baifei, S., Lingang, Z., Xiaomei, Z., Wenpeng, W. & Zhizhan, X. (2014). Light fan driven by a relativistic laser pulse. Phys. Rev. Lett. 112, 235001.

Keywords

Type Description Title
PDF
Supplementary materials

Lécz supplementary material S1
Lécz supplementary material

 PDF (26 KB)
26 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed