Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T05:42:57.096Z Has data issue: false hasContentIssue false

Plasma induced energy deposition and radiation transport effects in ion beam heated plane metal targets and analytic solutions of the non-linear radiation conduction equation

Published online by Cambridge University Press:  09 March 2009

K. A. Long
Affiliation:
Institute de Génie Atomique, Departement de Physique, École Polytechnique Fédérale de Lausanne CH-1015 Lausanne, Switzerland
N. A. Tahir
Affiliation:
Institute for Neutron Physics and Reactor Engineering, Nuclear Research Centre, Postfach 3640, 75 Karlsruhe 1, Federal Republic of Germany

Abstract

The effects of microscopic energy deposition in hot, dense plasmas and radiation transport in plasmas, on the interaction of ion beams with plane metal targets are investigated in this paper. In order to do this we analyze the plasma dynamics of ablatively accelerated plane metal foils. The physical analysis of these results is achieved by the derivation of solutions of the non-linear radiation conduction equation with boundary temperatures which increase in time. We illustrate, by means of numerical simulations, how range shortening due to plasma effects such as increased energy loss to excited electrons and an increased effective charge due to a reduction in the recombination rate, may be compensated for by radiation transport. The effect of radiation transport and detailed microscopic energy deposition on ion beam implosions, including hydrodynamic instability, is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, H. & Ziegler, J. 1977 Hydrogen stopping power and ranges in all elements, Pergamon Press, New York.Google Scholar
Badger, B. et al. 1981 HIBALL, A conceptual heavy ion beam driven fusion reactor design, KfK-3202.Google Scholar
Bangeter, R. & Meeker, D. 1976 Ion beam inertial fusion target design, UCRL-78474.Google Scholar
Baranblatt, G. I. 1952 Prikl. Mat. i. Mekh. 16, 67.Google Scholar
Bennett, B. I. et al. 1978 LA-7130.Google Scholar
Bethe, H. A. 1936 Ann. der Physik (Leipzig), 5, 325.Google Scholar
Beynon, T. D. 1982 Phil. Trans. Roy. Soc. London, A300, 613.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and hydromagnetic stability, Oxford university press, England.Google Scholar
Clauser, M. J. 1975 Phys. Rev. Lett. 35, 848.CrossRefGoogle Scholar
Christiansen, J. P., Ashby, D. & Roberts. K. V. 1974 Comp. Phys. Comm. 7, 271.CrossRefGoogle Scholar
Deutsch, C., Maynard, G. & Minoo, H. 1983 J. Phys. (Paris), C8, 67.Google Scholar
Evans, R. G. & Bell, A. 1981 private communication.Google Scholar
Feigenbaum, M. J. 1983, Physica, 7D, 16.Google Scholar
Geiger, W., Hornberg, H. & Schramm, K. H. 1968 Springer tracts in modern physics, Volume 46, Springer Verlag, New York.Google Scholar
Hora, H. 1983 Laser and Particle Beams, 1, 231.Google Scholar
Hora, H. & Ghatak, A. K. 1985 Phys. Rev. A, 31, 3473.CrossRefGoogle Scholar
Kolmogorov, A. N. & Fomin, S. V. 1961 Elements of the theory of functions and functional analysis, Graylock Press, Rochester N.Y.Google Scholar
Latter, R. 1955 Phys. Rev. 99, 1854.CrossRefGoogle Scholar
Long, K. A. & Tahir, N. A. 1981 Energy deposition of ions in materials and numerical simulations of compression, ignition and burn of ion beam inertial confinement fusion pellets, KfK-3232.Google Scholar
Long, K. A. & Tahir, N. A. 1982a Phys. Lett. 91A, 451.CrossRefGoogle Scholar
Long, K. A. & Tahir, N. A. 1982b GSI0–82–6, 54.Google Scholar
Long, K. A. & Tahir, N. A. & Pomraning, G. C. 1983a GSI-83–2, 39.Google Scholar
Long, K. A., Mortiz, N. & Tahir, N. A. 1983b GORGON, a computer code for the calculation of the energy loss and stopping power in cold materials and hot dense plasmas, KfK-3608.Google Scholar
Long, K. A. & Tahir, N. A. 1984a GSI-84–5, 51.Google Scholar
Long, K. A. & Tahir, N. A. 1984b GSI-84–5, 71.Google Scholar
Long, K. A. & Tahir, N. A. 1984c GSI-84–5, 73.Google Scholar
Long, K. A. & Tahir, N. A. 1985a GSI-85–21, 61.Google Scholar
Long, K. A. & Tahir, N. A. 1985b GSI-85–21, 49.Google Scholar
Long, K. A. & Tahir, N. A. 1985c Proceedings of the international conference on Atomic Physics in ion beam fusion,September, 1984,Rutherford Laboratory Report, to be published.Google Scholar
Long, K. A. & Tahir, N. A. 1986a Fusion Technology, submitted for publication.Google Scholar
Long, K. A. & Tahir, N. A. 1986b Phys. Fluids, 29, 275.CrossRefGoogle Scholar
Marshak, R. E. 1958 Phys. Fluids, 1, 24.CrossRefGoogle Scholar
Mehlhorn, T. A. 1981 J. Appl. Phys. 52, 6522.CrossRefGoogle Scholar
Mehlhorn, T. A., Peek, J. M., McGuire, E. J., Olsen, J. N. & Young, F. 1983 J. Phys. (Paris), C8, 39.Google Scholar
McGrory, R., Morse, R. & Taggart, K. A. 1977 Nucl. Sci. Eng. 64, 163.CrossRefGoogle Scholar
Mikaelian, K. O. 1982 Phys. Rev. A, 26A, 2140.CrossRefGoogle Scholar
Nardi, E., Peleg, E. & Zinamon, Z. 1978 Phys. Fluids, 21, 574.CrossRefGoogle Scholar
Nardi, E. & Zinamon, Z. 1982 Phys. Rev. Lett. 49, 1251.CrossRefGoogle Scholar
Petschek, A. G., Williamson, R. E. & Wooten, J. K. 1960 LAMS-2421.Google Scholar
Pomraning, G. C. 1967 J. Appl. Phys. 38, 3845.CrossRefGoogle Scholar
Pomraning, G. C. 1968 J. Appl. Phys. 39, 1479.CrossRefGoogle Scholar
Pritzke, R. A. 1975 Multigroup cross sections for thermal radiation in a uranium plasma, Doctoral thesis, Technische Hochschule, Zurich.Google Scholar
Pritzke, R. A. 1982 Thermal radiation multigroup absorption cross sections for inertial fusion target materials, Laboratory report IM–318, S.I.N., Switzerland.Google Scholar
Rayleigh, , Lord, , 1983 Proc. London Math. Soc. 14, 170.Google Scholar
Read, K. I. 1984 Physica, 12D, 45.Google Scholar
Sharp, D. H. 1984 Physica, 12D, 3.Google Scholar
Tamba, M., Nagata, N., Kawata, S. & Niu, K. 1983 Laser & Particle Beams, 2, 121.CrossRefGoogle Scholar
Tahir, N. A. & Long, K. A. 1982a GSI-82–6, 59.Google Scholar
Tahir, N. A. & Long, K. A. 1982b AtomKernenergie, 40, 157.Google Scholar
Tahir, N. A. & Long, K. A. 1982c Phys, Lett. 90A, 242.CrossRefGoogle Scholar
Tahir, N. A. & Long, K. A. 1982d GSI-82–6, 53.Google Scholar
Tahir, N. A. & Long, K. A. 1983a Nucl. Fusion, 23, 887.CrossRefGoogle Scholar
Tahir, N. A. & Long, K. A. 1983b GSI-83–2, 38.Google Scholar
Tahir, N. A. & Long, K. A. 1983c MEDUSA-KA, KfK-3454.Google Scholar
Tahir, N. A. & Long, K. A. 1984a Laser & Particle Beams, 2, 371.CrossRefGoogle Scholar
Tahir, N. A. & Long, K. A. 1984b GSI-84–5, 52.Google Scholar
Tahir, N. A. & Long, K. A. 1985a GSI-85–21, 62.Google Scholar
Tahir, N. A. & Long, K. A. 1986a AtomKernenergie, to be published.Google Scholar
Tahir, N. A. & Long, K. A. 1986b Phys. Fluids, to be published.Google Scholar
Taylor, G. 1950 Proc. Roy. Soc. 201A, 192.Google Scholar
Youngs, D. L. 1984 Physica 12D, 32.Google Scholar
Zel'dovich, Ya. B. & Raizer, Yu. P. 1965 The physics of shock waves and high temperature phenomena, Academic Press, New York Vol. 2, Ch. 10.Google Scholar