Skip to main content Accessibility help
×
Home

Numerical studies on the ultrashort pulse K-α emission sources based on femtosecond laser–target interactions

  • J. LIMPOUCH (a1), O. KLIMO (a1), V. BÍNA (a1) and S. KAWATA (a2)

Abstract

K-α emission is an intense short-pulse line source well suited for X-ray diagnostic techniques with subpicosecond and micrometer resolution. Numerical simulations are performed here in a search for laser–target interaction regimes where both high efficiency of laser energy transformation to X-ray emission and ultrashort X-ray pulses are achieved. We use the one-dimensional PIC code for the description of the laser interaction with the plasma layer at the target surface. Fast electron transport into the target is treated by our newly developed Monte Carlo code with temporal resolution that is described here in detail. Our simulations reveal extremely short ∼200 fs FWHM bright K-α X-ray pulses emitted from targets heated by 120-fs pulses of a table-top laser. Laser energy conversion efficiency to K-α line emission as high as 6 × 10−5 is noticed. Integration of the emitted energy over the focal spot is carried out to improve the simulation accord with published experimental data. Negligible impact of self-induced electric fields on K-α emission is found for conducting target materials at moderate laser intensities [lsim ]1017 W/cm2.

Copyright

Corresponding author

Address correspondence and reprint requests to: J. Limpouch, Faculty of Nuclear Sciences and Physical Engineering CTU, Brehová 7, 115 19 Praha 1, Czech Republic. E-mail: limpouch@siduri.fjfi.cvut.cz

References

Hide All

REFERENCES

Acosta, E., Llovet, X., Coleoni, E., Riveros, J.A. & Salvat, F. (1998). Monte Carlo simulation of x-ray emission by kilovolt electron bombardment. J. Appl. Phys. 83, 60386049.
Andreev, A.A., Limpouch, J., Iskakov, A.B. & Nakano, H. (2002). Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses. Phys. Rev. E 65, 026403.
Berger, M.J., Coursey, J.S. & Zucker, M.A. (2000). Stopping power and range tables for electrons, protons, and helium ions: ESTAR. National Institute of Standards and Technology, http://physics.nist.gov/PhysRefData/Star/Text/contents.html.
Browning, R., Li, T.Z., Chui, B., Jun Ye, Pease, R.F.W., Czyzewski, Z., &Joy, D.C. (1995). Low-energy electron/atom elastic scattering cross sections from 0.1–30 keV. Scanning 17, 250253.
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.
Casnati, E., Tartari, A. & Baraldi, C. (1982). An empirical approach to K-shell ionisation cross section by electrons. J. Phys. B 15, 155167.
Davies, J.R., Bell, A.R., Haines, M.G. & Guerin, S.M. (1997). Short-pulse high-intensity laser-generated fast electron transport into thick solid targets. Phys. Rev. E 56, 71937203.
Davis, J., Clark, R. & Guiliani, J. (1995). Ultrashort-pulse laser-produced Al/Si plasma. Laser Part. Beams 13, 318.
Dick, C.E., Lucas, A.C., Motz, J.M., Placious, R.C. & Sparrow, J. H. (1973). Large-angle L x-ray production by electrons. J. App. Phys. 44, 815826.
Eder, D.C., Pretzler, G., Fill, E., Eidmann, K. & Saemann, A. (2000). Spatial characteristics of Kα radiations from weakly relativistic laser plasmas. Appl. Phys. B 70, 211217.
Feurer, T., Morak, A., Uschmann, I., Ziener, C., Schwoerer, H., Förster, E. & Sauerbrey, R. (2001a). An incoherent sub-picosecond X-ray source for time-resolved X-ray-diffraction experiments. Appl. Phys. B 72, 1520.
Feurer, T., Morak, A., Uschmann, I., Ziener, C., Schwoerer, H., Reich, Ch., Gibbon, P., Förster, E., Sauerbrey, R., Ortner, K. & Becker, C.R. (2001b). Femtosecond silicon Kα pulses from laser-produced plasmas. Phys. Rev. E 65, 016412.
Gibbon, P. & Förster, E. (1996). Short-pulse laser–plasma interactions. Plasma Phys. Contr. Fusion 38, 769793.
Hubbel, J.H. & Seltzer, S.M. (2001). Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for lements Z = 1 to 92 and 48 additional substances of dosimetric interest. National Institute for Standards and Technology, http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html.
Lichters, R., Pfund, R.E.W. & Meyer-ter-Vehn, J. (1997). LPIC++: A parallel one-dimensional relativistic electromagnetic particle-in-cell-code for simulating laser–plasma interactions, Report MPQ 225, Garching, Germany: Max-Planck Institut für Quantenoptik.
Limpouch, J., Bìna, V., Dytrych, T. & Klimo, O. (2002). Laser absorption, electron acceleration and K-α emission in short-pulse laser-target interactions. Cz. J. Phys. 52, D342D348.
Limpouch, J., Drska, L. & Liska, R. (1994). Fokker–Planck simulations of interactions of femtosecond laser pulses with dense plasmas. Laser Part. Beams 12, 101110.
Nakano, H., Nishikawa, T. & Uesugi, N. (2001). Enhanced K-shell x-ray line emissions from aluminium plasma created by a pair of femtosecond laser pulses. Appl. Phys. Lett. 79, 2426.
Namito, Y. & Hirayama, H. (1999). Implementation of electron-impact ionization into the EGS4 code. Nucl. Instrum. Methods Phys. Res. A 423, 238246.
Reich, Ch., Gibbon, P., Uschmann, I. & Förster, E. (2000). Yield optimization and time structure of femtosecond plasma Kα sources, Phys. Rev. Lett. 84, 48464849.
Rose-Petruck, C., Jimenez, R., Guo, T., Cavalleri, A., Siders, C.W., Raksi, F., Squier, J.A., Walker, B.C., Wilson, K.R. & Barty, C.P.J. (1999). Picosecond–miliångström lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310312.
Salvat, F., Fernandez-Varea, J.M., Acosta, E. & Sempau, J. (2001). PENELOPE—A code system for Monte Carlo simulation of electron and photon transport. In Workshop Proceedings, Nuclear Energy Agency.
Schlegel, Th., Bastiani, S., Gremillet, L., Audebert, P., Geindre, J.P., Gauthier, J.-C., Lefebre, E., Bonnaud, G. & Delettrez, J. (1999). Comparison of measured and calculated x-ray and hot-electron production in short-pulse laser–solid interactions at moderate intensities. Phys. Rev. E 60, 22092217.
Siders, C.W., Cavalleri, A., Sokolowski-Tinten, K., Toth, C., Guo, T., Kammler, M., Horn von Hoegen, M., Wilson, K.R., Von der Linde, D. & Barty, C.P.J. (1999). Detection of nonthermal melting by ultrafast X-ray diffraction. Science 268, 13401342.
Uschmann, I., Gibbon, P., Klöpfel, D., Feurer, T., Förster, E., Audebert, P., Geindre, J.P., Gauthier, J.-C., Rousse, A. & Rischel, C. (1999). X-ray emission produced by hot electrons from fs-laser produced plasma—Diagnostic and application. Laser Part. Beams 17, 671680.
Von der Linde, D., Sokolowski-Tinten, K., Blome, Ch., Dietrich, C., Zhou, P., Tarasevitch, A., Cavalleri, A., Siders, C.W., Barty, C.P.J., Squier, J., Wilson, K.R., Uschmann, I. & Förster, E. (2001). Generation and application of ultrashort X-ray pulses. Laser Part. Beams 19, 1522.
Zhidkov, A., Sasaki, A., Utsumi, T., Fukumoto, I., Tajima, T., Saito, F., Hironaka, Y., Nakamura, K.G., Kondo, K. & Yoshida, M. (2000). Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids. Phys. Rev. E 62, 72327240.

Keywords

Numerical studies on the ultrashort pulse K-α emission sources based on femtosecond laser–target interactions

  • J. LIMPOUCH (a1), O. KLIMO (a1), V. BÍNA (a1) and S. KAWATA (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed