Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T03:39:50.556Z Has data issue: false hasContentIssue false

Numerical studies on the ultrashort pulse K-α emission sources based on femtosecond laser–target interactions

Published online by Cambridge University Press:  01 June 2004

J. LIMPOUCH
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
O. KLIMO
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
V. BÍNA
Affiliation:
Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Praha, Czech Republic
S. KAWATA
Affiliation:
Utsunomiya University, Department of Electrical and Electronics Engineering, Yohtoh, Utsunomiya, Japan

Abstract

K-α emission is an intense short-pulse line source well suited for X-ray diagnostic techniques with subpicosecond and micrometer resolution. Numerical simulations are performed here in a search for laser–target interaction regimes where both high efficiency of laser energy transformation to X-ray emission and ultrashort X-ray pulses are achieved. We use the one-dimensional PIC code for the description of the laser interaction with the plasma layer at the target surface. Fast electron transport into the target is treated by our newly developed Monte Carlo code with temporal resolution that is described here in detail. Our simulations reveal extremely short ∼200 fs FWHM bright K-α X-ray pulses emitted from targets heated by 120-fs pulses of a table-top laser. Laser energy conversion efficiency to K-α line emission as high as 6 × 10−5 is noticed. Integration of the emitted energy over the focal spot is carried out to improve the simulation accord with published experimental data. Negligible impact of self-induced electric fields on K-α emission is found for conducting target materials at moderate laser intensities [lsim ]1017 W/cm2.

Type
Research Article
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acosta, E., Llovet, X., Coleoni, E., Riveros, J.A. & Salvat, F. (1998). Monte Carlo simulation of x-ray emission by kilovolt electron bombardment. J. Appl. Phys. 83, 60386049.Google Scholar
Andreev, A.A., Limpouch, J., Iskakov, A.B. & Nakano, H. (2002). Enhancement of x-ray line emission from plasmas produced by short high-intensity laser double pulses. Phys. Rev. E 65, 026403.Google Scholar
Berger, M.J., Coursey, J.S. & Zucker, M.A. (2000). Stopping power and range tables for electrons, protons, and helium ions: ESTAR. National Institute of Standards and Technology, http://physics.nist.gov/PhysRefData/Star/Text/contents.html.
Browning, R., Li, T.Z., Chui, B., Jun Ye, Pease, R.F.W., Czyzewski, Z., &Joy, D.C. (1995). Low-energy electron/atom elastic scattering cross sections from 0.1–30 keV. Scanning 17, 250253.Google Scholar
Brunel, F. (1987). Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59, 5255.Google Scholar
Casnati, E., Tartari, A. & Baraldi, C. (1982). An empirical approach to K-shell ionisation cross section by electrons. J. Phys. B 15, 155167.Google Scholar
Davies, J.R., Bell, A.R., Haines, M.G. & Guerin, S.M. (1997). Short-pulse high-intensity laser-generated fast electron transport into thick solid targets. Phys. Rev. E 56, 71937203.Google Scholar
Davis, J., Clark, R. & Guiliani, J. (1995). Ultrashort-pulse laser-produced Al/Si plasma. Laser Part. Beams 13, 318.Google Scholar
Dick, C.E., Lucas, A.C., Motz, J.M., Placious, R.C. & Sparrow, J. H. (1973). Large-angle L x-ray production by electrons. J. App. Phys. 44, 815826.Google Scholar
Eder, D.C., Pretzler, G., Fill, E., Eidmann, K. & Saemann, A. (2000). Spatial characteristics of Kα radiations from weakly relativistic laser plasmas. Appl. Phys. B 70, 211217.Google Scholar
Feurer, T., Morak, A., Uschmann, I., Ziener, C., Schwoerer, H., Förster, E. & Sauerbrey, R. (2001a). An incoherent sub-picosecond X-ray source for time-resolved X-ray-diffraction experiments. Appl. Phys. B 72, 1520.Google Scholar
Feurer, T., Morak, A., Uschmann, I., Ziener, C., Schwoerer, H., Reich, Ch., Gibbon, P., Förster, E., Sauerbrey, R., Ortner, K. & Becker, C.R. (2001b). Femtosecond silicon Kα pulses from laser-produced plasmas. Phys. Rev. E 65, 016412.Google Scholar
Gibbon, P. & Förster, E. (1996). Short-pulse laser–plasma interactions. Plasma Phys. Contr. Fusion 38, 769793.Google Scholar
Hubbel, J.H. & Seltzer, S.M. (2001). Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 MeV for lements Z = 1 to 92 and 48 additional substances of dosimetric interest. National Institute for Standards and Technology, http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html.
Lichters, R., Pfund, R.E.W. & Meyer-ter-Vehn, J. (1997). LPIC++: A parallel one-dimensional relativistic electromagnetic particle-in-cell-code for simulating laser–plasma interactions, Report MPQ 225, Garching, Germany: Max-Planck Institut für Quantenoptik.
Limpouch, J., Bìna, V., Dytrych, T. & Klimo, O. (2002). Laser absorption, electron acceleration and K-α emission in short-pulse laser-target interactions. Cz. J. Phys. 52, D342D348.Google Scholar
Limpouch, J., Drska, L. & Liska, R. (1994). Fokker–Planck simulations of interactions of femtosecond laser pulses with dense plasmas. Laser Part. Beams 12, 101110.Google Scholar
Nakano, H., Nishikawa, T. & Uesugi, N. (2001). Enhanced K-shell x-ray line emissions from aluminium plasma created by a pair of femtosecond laser pulses. Appl. Phys. Lett. 79, 2426.Google Scholar
Namito, Y. & Hirayama, H. (1999). Implementation of electron-impact ionization into the EGS4 code. Nucl. Instrum. Methods Phys. Res. A 423, 238246.Google Scholar
Reich, Ch., Gibbon, P., Uschmann, I. & Förster, E. (2000). Yield optimization and time structure of femtosecond plasma Kα sources, Phys. Rev. Lett. 84, 48464849.Google Scholar
Rose-Petruck, C., Jimenez, R., Guo, T., Cavalleri, A., Siders, C.W., Raksi, F., Squier, J.A., Walker, B.C., Wilson, K.R. & Barty, C.P.J. (1999). Picosecond–miliångström lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310312.Google Scholar
Salvat, F., Fernandez-Varea, J.M., Acosta, E. & Sempau, J. (2001). PENELOPE—A code system for Monte Carlo simulation of electron and photon transport. In Workshop Proceedings, Nuclear Energy Agency.
Schlegel, Th., Bastiani, S., Gremillet, L., Audebert, P., Geindre, J.P., Gauthier, J.-C., Lefebre, E., Bonnaud, G. & Delettrez, J. (1999). Comparison of measured and calculated x-ray and hot-electron production in short-pulse laser–solid interactions at moderate intensities. Phys. Rev. E 60, 22092217.Google Scholar
Siders, C.W., Cavalleri, A., Sokolowski-Tinten, K., Toth, C., Guo, T., Kammler, M., Horn von Hoegen, M., Wilson, K.R., Von der Linde, D. & Barty, C.P.J. (1999). Detection of nonthermal melting by ultrafast X-ray diffraction. Science 268, 13401342.Google Scholar
Uschmann, I., Gibbon, P., Klöpfel, D., Feurer, T., Förster, E., Audebert, P., Geindre, J.P., Gauthier, J.-C., Rousse, A. & Rischel, C. (1999). X-ray emission produced by hot electrons from fs-laser produced plasma—Diagnostic and application. Laser Part. Beams 17, 671680.Google Scholar
Von der Linde, D., Sokolowski-Tinten, K., Blome, Ch., Dietrich, C., Zhou, P., Tarasevitch, A., Cavalleri, A., Siders, C.W., Barty, C.P.J., Squier, J., Wilson, K.R., Uschmann, I. & Förster, E. (2001). Generation and application of ultrashort X-ray pulses. Laser Part. Beams 19, 1522.Google Scholar
Zhidkov, A., Sasaki, A., Utsumi, T., Fukumoto, I., Tajima, T., Saito, F., Hironaka, Y., Nakamura, K.G., Kondo, K. & Yoshida, M. (2000). Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids. Phys. Rev. E 62, 72327240.Google Scholar