Skip to main content Accessibility help
×
Home

Nonlinear structure of electromagnetic field, electron temperature and electron density in interaction of relativistic laser and plasma with density ripple

  • Xiongping Xia (a1)

Abstract

In the paper, nonlinear structure of electromagnetic field, electron temperature, and electron density in interaction with relativistic laser and collisional underdense rippled plasma are investigated. The results are shown that due to the combination influence of relativistic effect, ohmic heating and plasma density ripple, electromagnetic field profile presents obvious asynchronism, which the peak of electric field run ahead of the peak of magnetic field. Furthermore, the electromagnetic field profiles show obvious non-sinusoidal, and the profile of electron temperature and density become highly peaked. Especially, compared with the previous work, due to the added influence of plasma density ripple, electromagnetic field, electron temperature and electron density present obvious oscillation along plasma length rather than stabilization amplitude, and their peak are out of sync.

Copyright

Corresponding author

Address correspondence and reprint requests to: Xiongping Xia, Department of Science, Guilin University of Technology, Guilin 541004, China. E-mail: xxpccp@163.com

References

Hide All
Abedi, S., Dorranian, D., Abari, M.E. & Shokri, B. (2011). Relativistic effects in the interaction of high intensity ultra-short laser pulse with collisional underdense plasma. Phys. Plasmas 18, 093108.
Abari, M.E. & Shokri, B. (2011). Nonlinear heating of underdense collisional plasma by a laser pulse. Phys. Plasmas 18, 053111.
Borghesi, M., Schiavi, A., Campbell, D.H., Haines, M.G., Willi, O., Mackinnon, A.J., Patel, P., Galimberti, M. & Gizzi, L.A. (2003). Proton imaging detection of transient electromagnetic fields in laser-plasma interaction (invited). Rev. Sci. Instrum. 74, 16881693.
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.
Goldsmith, S., Seely, J.F., Feldman, U., Behring, W.E. & Cohen, L. (1985). Electron temperature and average density in spherical laser-produced plasmas: Ultraviolet plasma spectroscopy. J. Appl. Phys. 58, 40114014.
Harilal, S.S., Bindhu, C.V., Issac, R.C., Nampoori, V.P.N. & Vallabhan, C.P.G. (1997). Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82, 21402146.
Jha, P., Singh, R.G., Upadhyaya, A.K. & Mishra, R.K. (2008). Propagation of an intense laser beam in a tapered plasma channel. Phys. Plasmas 15, 033101.
Kane, E. & Hora, H. (1981). Relativistic and nonlinear radiation interaction between laser beams and plasmas. Aust. J. Phys. 34, 385405.
Kuo, C.C., Pai, C.H., Lin, M.W., Lee, K.H., Lin, J.Y., Wang, J. & Chen, S.Y. (2007). Enhancement of Relativistic Harmonic Generation by an Optically Preformed Periodic Plasma Waveguide. Phys. Rev. Lett. 98, 033901.
Kaw, P., Schmidt, G. & Wilcox, T. (1973). Filamentation and trapping of electromagnetic radiation in plasmas. Phys. Fluids 16: 15221525.
Kaur, S., Yadav, S. & Sharma, A.K. (2010). Effect of self-focusing on resonant third harmonic generation of laser in a rippled density plasma. Phys. Plasmas 17, 053101.
Lancia, L., Grech, M., Weber, S., Marquès, J.R., Romagnani, L., Nakatsutsumi, M., Antici, P., Bellue, A., Bourgeois, N., Feugeas, J.L., Grismayer, T., Lin, T., Nicolai, P., Nkonga, B., Audebert, P., Kodama, R., Tikhonchuk, V.T. & Fuchs, J. (2011). Anomalous self-generated electrostatic fields in nanosecond laser-plasma interaction. Phys. Plasmas 18, 030705.
Niknam, A.R., Hashemzadeh, M. & Shokri, B. (2009). Weakly relativistic and ponderomotive effects on the density steepening in the interaction of an intense laser pulse with an underdense plasma. Phys. Plasmas 16, 033105.
Niknam, A.R., Milani, M.R.J., Bokaei, B. & Hashemzadeh, M. (2014). Weakly relativistic and ponderomotive effects in interaction of intense laser beam with inhomogeneous collisionless and collisional plasmas. Waves in Random and Complex Media 24, 118.
Oh, S.Y., Uhm, H.S., Kang, H., Lee, I.W. & Suk, H. (2010). Temporal evolution of electron density and temperature in capillary discharge plasmas. J. Appl. Phys. 107, 103309.
Panwar, A., Ryu, C.M. & Kumar, A. (2013). Effect of plasma channel non-uniformity on resonant third harmonic generation. Laser Part. Beams 31, 531537
Qiao, B., He, X.T. & Zhu, S.P. (2005). Fluid theory of magnetic-field generation in intense laser-plasma interaction. Europhys. Lett. 72, 955961.
Rocca, J.J., Shlyaptsev, V., Tomasel, F.G., Gortazer, O.D., Hartshorn, D. & Chilla, J.L.A. (1994). Demonstration of a discharge pumped table-top soft-X-ray laser. Phys. Rev. Lett. 73, 21922195.
Shoda, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169265.
Sadighi-Bonabi, R. & Etehadi-Abari, M. (2010). The electron density distribution and field profile in underdense magnetized plasma. Phys. Plasmas 17, 032101.
Shokri, B. & Nikanm, A.R. (2006). Nonlinear structure of the electromagnetic waves in underdense plasmas. Phys. Plasmas 13, 113110.
Sheng, Z.M., Zhang, J. & Umstadter, D. (2003). Plasma density gratings induced by intersecting laser pulses in underdense plasmas. Appl. Phys. B: Lasers Opt. 77, 673680.
Theobald, W., Häbner, , Kingham, R., Sauerbrey, R., Fehr, R., Gericke, D.O., Schlanges, M., Kraeft, W.D. & Ishikawa, K. (1999). Electron densities, temperatures, and the dielectric function of femtosecond-laser-produced plasmas. Phys. Rev. E 59, 35443553.
Varshney, P., Sajal, V., Singh, K.P., Kumar, R. & Sharma, N.K. (2013). Strong terahertz radiation generation by beating of extraordinary mode lasers in a rippled density magnetized plasma. Laser Part. Beams 31, 337344.
Xia, X.P., Cai, Z.B. & Yi, L. (2011 a). The splitted beam profile of laser beam in the interaction of intense lasers with overdense plasmas. Laser Part. Beams 29, 161168.
Xia, X.P., Qin, Z., Xu, B. & Cai, Z.B. (2011 b). Dielectric constant and laser beam propagation in an underdense collisional plasma: effects of electron temperature. Phys. Scr. 84, 015508.
Xia, X.P. & Xu, B. (2013). Nonlinear structure of Gaussian laser beam in an axial non-uniform collisional plasma. Opt. 124, 66476650.
Xie, B.S., Wu, H.C., Wang, H.Y., Wang, N.Y. & Yu, M.Y. (2007). Analysis of the electromagnetic fields and electron acceleration in the buble regime of the laser-plasma interaction. Phys. Plasmas 14, 073103.
York, A.G., Milchberg, H.M., Palastro, J.P. & Antonsen, T.M. (2008). Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100, 195001.

Keywords

Related content

Powered by UNSILO

Nonlinear structure of electromagnetic field, electron temperature and electron density in interaction of relativistic laser and plasma with density ripple

  • Xiongping Xia (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.