Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-27T17:09:32.334Z Has data issue: false hasContentIssue false

Nonlinear absorption of ultra short laser pulses by clusters

Published online by Cambridge University Press:  06 March 2006

M. KANAPATHIPILLAI
Affiliation:
Gesellschaft für Schwerionenforschung, Darmstadt, Germany and Technische Universität Darmstadt, Darmstadt, Germany

Abstract

Very good absorption of ultra short laser pulses by clusters is a well established fact. Efficient collisional absorption occurs only in the initial phase of the pulse. However, experiments and numerical simulations show that even after collisional absorption becomes inefficient subsequent to heating of the electrons, strong absorption continues. There have been a few attempts to model this phenomenon in terms of driven “linear” oscillator models with time dependent eigen-frequencies. Here we propose a nonlinear oscillator model and show that nonlinear resonance is the leading mechanism responsible for the collisionless absorption. Further it is demonstrated, on the basis of Lyapunov spectra, that laser-cluster interaction, under certain conditions, exhibits chaotic behavior.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bauer, D. (2004). Small rare gas clusters in laser fields: Ionization and absorption at long and short laser wavelengths. J. Physics B 37, 30853101.Google Scholar
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuels. Laser Part. Beams 22, 115120.Google Scholar
Deutsch, C., Bret, A. & Fromy, P. (2005). Mitigation of electromagnetic instabilities in fast ignition scenario. Laser Part. Beams 23, 58.Google Scholar
Ditmire, T., Donnelly, T., Falcone, R.W. & Perry, M.D. (1995). Strong X-ray-emission from high-temperature plasmas produced by intense irradiation of clusters. Phys. Rev. Lett. 75, 31223125.Google Scholar
Ditmire, T., Smith, R.A., Tisch, J.W.G. & Hutchinson, M.H.R. (1997). High intensity laser absorption by gases of atomic clusters. Phys. Rev. Lett. 78, 31213124.Google Scholar
Ditmire, T., Springate, E., Tisch, J.W.G., Shao, Y.L., Mason, M.B., Hay, N., Marangos, J.P. & Hutchinson, M.H.R. (1998). Explosion of atomic clusters heated by high-intensity femtosecond laser pulses. Phys. Rev. A 57, 369382.Google Scholar
Ditmire, T., Zweiback, J., Yanovsky, V.P., Cowan, T.E., Hays, G. & Wharton, K.B. (1999). Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters. Nature 398, 489492.Google Scholar
Donnelly, T.D., Ditmire, T., Neuman, K., Perry, M.D. & Falcone, R.W. (1996). High-order harmonic generation in atom clusters. Phys. Rev. Lett. 76, 24722475.Google Scholar
Fuerbach, A., Fernandez, A., Apolonski, A., Fuji, T. & Krausz, F. (2005). Chirped-pulse oscillators for the generation of high-energy femtosecond laser pulses. Laser Part. Beam 23, 113116.Google Scholar
Fukuda, Y., Akahane, Y., Aoyama, M., Inoue, N., Ueda, H., Kishimoto, Y., Yamakawa, K., Faenov, A.Y., Magunov, A.I., Pikuz, T.A., Skobelev, I.Y., Abdallah, J., Csanak, G., Boldarev, A.S. & Gasilov, V.A. (2004). Generation of X rays and energetic ions from superintense laser irradiation of micron-sized Ar clusters. Laser Part. Beams 22, 215220.Google Scholar
Greschik, F. & Kull, H. (2004). Two-dimensional PIC simulation of atomic clusters in intense laser fields. Laser Part. Beams 22, 137145.Google Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N.A., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.Google Scholar
Hora, H. (2004). Developments in inertial fusion energy and beam fusion at magnetic confinement. Laser Part. Beams 22, 439449.Google Scholar
Jungreuthmayer, C., Geissler, M., Zanghellini, J. & Brabec, T. (2004). Microscopic analysis of large-cluster explosion in intense laser fields. Phys. Rev. Lett. 92, 133401.Google Scholar
Kanapathipillai, M., Mulser, P., Hoffmann, D.H.H., Schlegel, T., Maron, Y. & Sauerbrey, R. (2004). Net charge of a conducting microsphere embedded in a thermal plasma. Phys. Plasmas 11, 39113914.Google Scholar
Magunov, AI., Faenov, AY., Skobelev, I.Y., Pikuz, T.A., Dobosz, S., Schmidt, M., Perdrix, M., Meynadier, P., Gobert, O., Normand, D., Stenz, C., Bagnoud, V., Blasco, F., Roche, J.R., Salin, F. & Sharkov, B.Y. (2003). X-ray spectra of fast ions generated from clusters by ultrashort laser pulses. Laser Part. Beams 21, 7379.Google Scholar
McPherson, A., Thompson, B.D., Borisov, A.B., Boyer, K. & Rhodes, C.K. (1994). Multiphoton-induced X-ray-emission at 4–5 keV from Xe atoms with multiple core vacancies. Nature 370, 631634.Google Scholar
Saalmann, U. & Rost, J.M. (2003). Ionization of clusters in intense laser pulses through collective electron dynamics. Phys. Rev. Lett. 91, 223401.Google Scholar
Shokri, B., Niknam, A.R. & Krainov, V. (2004a). Cluster structure effects on the interaction of an ultrashort intense laser field with large clusters. Laser Part. Beams 22, 1318.Google Scholar
Shokri, B., Niknam, A.R. & Smirnov, M. (2004b). Ionization processes in the ultrashort, intense laser field interaction with large clusters. Laser Part. Beams 22, 4550.Google Scholar
Springate, E., Aseyev, S.A., Zamith, S. & Vrakking, M.J.J. (2003). Electron kinetic energy measurements from laser irradiation of clusters. Phys. Rev. A 68, 053201.Google Scholar
Taguchi, T., Antonsen, T.M. & Milchberg, H.M. (2004). Resonant heating of a cluster plasma by intense laser light. Phys. Rev. Lett. 92, 205003.Google Scholar
Tahir, NA., Kain, V., Schmidt, R., Shutov, A., Lomonosov, I.V., Gryaznov, V., Piriz, A.R., Temporal, M., Hoffmann, D.H.H. & Fortov, V.E. (2005). The CERN large hadron collider as a tool to study high-energy density matter. Phys. Rev. Lett. 94, 135004.Google Scholar
Tahir, NA., Lutz, K.J., Geb, O., Maruhn, J.A., Deutsch, C. & Hoffmann, D.H.H. (1997). Inertial confinement fusion using hohlraum radiation generated by heavy-ion clusters. Phys. Plasmas 4, 796816.Google Scholar
Udwadia, F.E. & von Bremen, H.F. (2002). Computation of Lyapunov characteristic exponents for continuous dynamical systems. Zeitschrift Fur Angewandte Mathematik Und Physik 53, 123146.Google Scholar
Zhu, P.P., Liu, H.S. & Xu, Z.Z. (2003). Theoretical investigation of high-energy ions produced from laser-cluster interactions. Laser Part. Beams 21, 593597.Google Scholar