Skip to main content Accessibility help

New scheme to produce aneutronic fusion reactions by laser-accelerated ions

  • C. Baccou (a1), S. Depierreux (a2), V. Yahia (a1), C. Neuville (a2), C. Goyon (a1) (a2), R. De Angelis (a3), F. Consoli (a3), J.E. Ducret (a4), G. Boutoux (a4), J. Rafelski (a5) and C. Labaune (a1)...


The development of high-intensity lasers has opened the field of nuclear reactions initiated by laser-accelerated particles. One possible application is the production of aneutronic fusion reactions for clean fusion energy production. We propose an innovative scheme based on the use of two targets and present the first results obtained with the ELFIE facility (at the LULI Laboratory) for the proton–boron-11 (p–11B) fusion reaction. A proton beam, accelerated by the Target Normal Sheat Acceleration mechanism using a short laser pulse (12 J, 350 fs, 1.056 µm, 1019 W cm−2), is sent onto a boron target to initiate fusion reactions. The number of reactions is measured with particle diagnostics such as CR39 track-detectors, active nuclear diagnostic, Thomson Parabola, magnetic spectrometer, and time-of-flight detectors that collect the fusion products: the α-particles. Our experiment shows promising results for this scheme. In the present paper, we discuss its principle and advantages compared with another scheme that uses a single target and heating mechanisms directly with photons to initiate the same p–11B fusion reaction.


Corresponding author

Address correspondence and reprint requests to: C. Baccou, LULI, Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France E-mail:


Hide All
Ajzenberg-Selove, F. (1990). Energy levels of light nuclei A = 12. Nucl. Phys. A 506, 1158.
Becker, H.W., Rolfs, C. & Trautvetter, H. P. (1987). Low-energy cross sections for 11B(p,3α). Zeitschriftfür Physik A – Atom. Nucl. 327, 341355.
Belyaev, V. S., Matafonov, A. P., Vinogradov, V. I., Krainov, V. P., Lisitsa, V. S., Roussetski, A. S., Ignatyev, G. N. & Andrianov, V. P. (2005). Observation of neutronless fusion reactions in picosecond laser plasmas. Phys. Rev. E 72, 026406.
Belyaev, V. S., Vinogradov, V. I., Matafonov, A. P., Rybakov, S. M., Krainov, V. P., Lisitsa, V. S., Andrianov, V. P., Ignatiev, G. N., Bushuev, V. S., Gromov, A. I., Rusetsky, A. S.&Dravin, V. A. (2009). Excitation of promising nuclear fusion reactions in picosecond laser plasmas. Phys. Atom. Nucl. 72, 10771098.
Bonnet, T., Comet, M., Denis-Petit, D., Gobet, F., Hannachi, F., Tarisien, M., Versteegen, M. & Aleonard, M. M. (2013). Response functions of imaging plates to photons, electrons and 4He particles. Rev. Sci. Instrum. 84, 103510.
Fews, A. P., Norreys, P. A., Beg, F. N., Bell, A. R., Dangor, A. E., Danson, C. N., Lee, P. & Rose, S. J. (1994). Plasma ion emission from high intensity picosecond laser pulse interactions with solid target. Phys. Rev. Lett. 73, 18011804.
Fleischer, R. L., Price, P. B. & Walker, R. M. (1965). Ion explosion spike mechanism for formation of charged particle tracks in solids. J. Appl. Phys. 36, 36453652.
Floux, F., Cognard, D., Denoeud, L-G., Piar, G., Parisot, D., Bobin, J. L., Delobeau, F. & Fauquignon, C. (1970). Nuclear fusion reactions in solid-deuterium laser-produced plasma. Phys. Rev. A 1, 821824.
Fuchs, J., Antici, P., D'Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C. A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pépin, P. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.
Krainov, V. P. (2005). Laser induced fusion in boron-hydrogen mixture. Laser Phys. Lett. 2, 8993.
Labaune, C., Baccou, C., Depierreux, S., Goyon, C., Loisel, G., Yahia, V. & Rafelski, J. (2013). Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma. Nat. Comm. 4, 2506.
Lalousis, P., Hora, H. & Moustaizis, S. (2014). Optimized boron fusion with magnetic trapping by laser driven plasma block initiation at nonlinear forced driven ultrahigh acceleration. Laser Part. Beams 32, 409411.
Ledingham, K. W. D., McKenna, P., McCanny, T., Shimizu, S., Yang, J. M., Robson, L., Zweit, J., Gillies, J. M., Bailey, J., Chimon, G. N., Clarke, R. J., Neely, D., Norreys, P. A., Collier, J. L., Singhal, R. P., Wei, M. S., Mangles, S. P. D., Nilson, P., Krushelnick, K. & Zepf, M. (2004). High power laser production of short-lived isotopes for positron emission tomography. J. Phys. D: Appl. Phys. 37, 23412345.
Lifschitz, A. F., Farengo, R. & Arista, N. R. (2000). Ionization, stopping, and thermalization of hydrogen and boron beams injected in fusion plasmas. Phys. Plasmas 7, 30363041.
Lindl, J. (1995). Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.
Macchi, A., Borghesi, M. & Passoni, M. (2013). Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751793.
Martinez-Val, J. M., Eliezer, S., Piera, M. & Velarde, G. (1996). Ion acceleration by superintense laser-plasma interaction. Phys. Lett. A 216, 142152.
McCall, G. H., Young, F., Ehler, A. W., Kephart, J. F. & Godwin, R. P. (1973). Neutron emission from laser-produced plasma. Phys. Rev. Lett. 30, 11161118
Mora, P. (2003). Plasma expansion into a vacuum. Phys. Rev. Lett. 90, 185002.
Moreau, D. C. (1977). Potentiality of the proton-boron fuel for controlled thermonuclear fusion. Nucl. Fusion 17, 1320.
Nevins, W. M. & Swain, R. (2000). The thermonuclear fusion rate coefficient for p-11B reaction. Nucl. Fusion 40, 865872.
Picciotto, A., Margarone, D., Velyhan, A., Belluti, P., Krasa, J., Szydlowsky, A., Bertuccio, G., Shi, Y., Mangione, A., Prokupek, J., Malinowska, A., Krousky, E., Ullschmied, J., Laska, L., Kucharuk, M. & Korn, G. (2014). Boron-Proton Nuclear-Fusion Enhancement Induced in Boron-Doped Silicon Targets by Low-Contrast Pulsed Laser. Phys. Rev. X 4, 031030.
Snavely, R. A., Zhang, B., Akli, K., Chen, Z., Freeman, R. R., Gu, P., Hatchett, S. P., Hey, D., Hill, J., Key, M. H., Izawa, Y., King, J., Kitagawa, Y., Kodama, R., Langdon, A. B., Lasinski, B. F., Lei, A., MacKinnon, A. J., Patel, P., Stephens, R., Tampo, M., Tanaka, K. A., Town, R., Toyama, Y., Tsutsumi, T., Wilks, S. C., Yabuuchi, T. & Zheng, J. (2007). Laser generated proton beam focusing and high temperature isochoric heating of solid matter. Phys. Plasmas 14, 092703.
Spencer, I., Ledingham, K. W. D., Singhal, R. P., McCanny, T., McKenna, P., Clark, E. L., Krushelnick, K., Zepf, M., Beg, F. N., Tatarakis, M., Dangor, A.E., Norreys, P.A., Clarke, R. J., Allott, R. M. & Ross, I. N. (2001). Laser generation of proton beams for the production of short-lived positron emitting radioisotopes. Nucl. Instrum. Meth. Phys. Res. B 183, 449458.
Strickland, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commun. 55, 447449.
Tabak, M., Munro, D. H. & Lindl, J. D. (1990). Ignition and high gain with ultrapowerful lasers. Phys. Fluids B 2, 10071014.
von Seggern, H. (1992). X-ray imaging with photostimulable phosphors. Nucl. Instrum. Meth. Phys. Res. A 322, 467471.
Yamanaka, C., Yamanaka, T., Sasaki, T., Yoshida, K. & Waki, M. (1972). Anomalous heating of a plasma by a laser. Phys. Rev. A 6, 23352342.
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. & Snavely, R. A. (2001). Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 8, 542549.
Zepf, M., Clark, E. L., Beg, F. N., Clarke, R. J., Dangor, A. E., Gopal, A., Krushelnick, K., Norreys, P. A., Tatarakis, M., Wagner, U. & Wei, M. S. (2003). Proton acceleration from high-intensity laser interactions with thin foil targets. Phys. Rev. Lett. 90, 064801


New scheme to produce aneutronic fusion reactions by laser-accelerated ions

  • C. Baccou (a1), S. Depierreux (a2), V. Yahia (a1), C. Neuville (a2), C. Goyon (a1) (a2), R. De Angelis (a3), F. Consoli (a3), J.E. Ducret (a4), G. Boutoux (a4), J. Rafelski (a5) and C. Labaune (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed