Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T16:54:39.310Z Has data issue: false hasContentIssue false

Neutron penumbral imaging of laser-fusion targets

Published online by Cambridge University Press:  09 March 2009

R. A. Lerche
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
D. Ress
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
R. J. Ellis
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
S. M. Lane
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
K. A. Nugent
Affiliation:
School of Physics, University of Melbourne, Parkville, Victoria, Australia 3052

Abstract

A camera has been developed that directly measures the deuterium-tritium burn region of laser-driven inertial confinement fusion targets. Images are formed by 14-MeV thermonuclear neutrons emitted from the targets. Our demonstration instrument is based on a coded-aperture imaging technique known as penumbral imaging, and has produced images of high-yield (> 1012 neutrons) direct-drive targets with resolutions of 80 μm. The camera consists of four major components: the penumbral aperture, alignment hardware, detector system, and image analysis software.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attwood, D. T. et al. 1981 Laser Interaction and Related Plasma Phenomena (Plenum Press, New York), Vol. 5, Schwartz, H. J., Hora, H., Lubin, M. J., Yaabobi, B., eds., pp. 423463.Google Scholar
Campbell, E. M. et al. 1986 Rev. Sci. Instrum., 57, 2101.CrossRefGoogle Scholar
Ellis, R. J. 1988 SPIE Proc, 965, 252.CrossRefGoogle Scholar
Gonzalez, R. C. & Wintz, P. 1977 Digital Image Processing (Addison-Wesley, Reading, MA).Google Scholar
Kania, D. R. et al. 1988 IEEE Trans. Nucl. Sci., 35, 387.CrossRefGoogle Scholar
Nugent, K. A. 1987 Optics Comm., 62, 305.CrossRefGoogle Scholar
Nugent, K. A. & Luther-Davies, B. 1984 Optics Comm., 49, 393.CrossRefGoogle Scholar
Nugent, K. A. & Luther-Davies, B. 1985 J. Appl. Phys., 58, 2508.CrossRefGoogle Scholar
Nugent, K. A. & Luther-Davies, B. 1986 J. Appl. Phys., 60, 1289.CrossRefGoogle Scholar
Nugent, K. A. & Luther-Davies, B. 1986a Appl. Optics, 25, 1008.CrossRefGoogle Scholar
Nuckolls, J. et al. 1972 Nature, 239, 139.CrossRefGoogle Scholar
Ress, D. 1990 IEEE Trans. Nucl. Sci., 37, 155.CrossRefGoogle Scholar
Ress, D. et al. 1988 Rev. Sci. Instrum., 59, 1694.CrossRefGoogle Scholar
Ress, D. et al. 1988a Science, 241, 956.CrossRefGoogle Scholar