Skip to main content Accessibility help
×
Home

MeV bremsstrahlung X rays from intense laser interaction with solid foils

  • S. Palaniyappan (a1), D. C. Gautier (a1), B. J. Tobias (a1), J. C. Fernandez (a1), J. Mendez (a1), T. Burris-Mog (a1), C. K. Huang (a1), A. Favalli (a1), J. F. Hunter (a1), M. E. Espy (a1), D. W. Schmidt (a1), R. O. Nelson (a1), A. Sefkow (a2), T. Shimada (a1) and R. P. Johnson (a1)...

Abstract

Laser-based compact MeV X-ray sources are useful for a variety of applications such as radiography and active interrogation of nuclear materials. MeV X rays are typically generated by impinging the intense laser onto ~mm-thick high-Z foil. Here, we have characterized such a MeV X-ray source from 120 TW (80 J, 650 fs) laser interaction with a 1 mm-thick tantalum foil. Our measurements show X-ray temperature of 2.5 MeV, flux of 3 × 1012 photons/sr/shot, beam divergence of ~0.1 sr, conversion efficiency of ~1%, that is, ~1 J of MeV X rays out of 80 J incident laser, and source size of 80 m. Our measurement also shows that MeV X-ray yield and temperature is largely insensitive to nanosecond laser contrasts up to 10−5. Also, preliminary measurements of similar MeV X-ray source using a double-foil scheme, where the laser-driven hot electrons from a thin foil undergoing relativistic transparency impinging onto a second high-Z converter foil separated by 50–400 m, show MeV X-ray yield more than an order of magnitude lower compared with the single-foil results.

Copyright

Corresponding author

Author for correspondence: S. Palaniyappan, Los Alamos National Laboratory, Los Alamos, NM-87545, USA, E-mail: sasi@lanl.gov

References

Hide All
Batha, SH, Aragonez, R, Archuleta, FL, Archuleta, TN, Benage, JF, Cobble, JA, Cowan, JS, Fatherley, VE, Flippo, KA, Gautier, DC, Gonzales, RP, Greenfield, SR, Hegelich, BM, Hurry, TR, Johnson, RP, Kline, JL, Letzring, SA, Loomis, EN, Lopez, FE, Luo, SN, Montgomery, DS, Oertel, JA, Paisley, DL, Reid, SM, Sanchez, PG, Seifter, A, Shimada, T and Workman, JB (2008) TRIDENT high-energy-density facility experimental capabilities and diagnostics. Review of Scientific Instruments 79(10), 10F305-1–10F305-3.
Brunel, F (1987) Not-so-resonant, resonant absorption. Physical Review Letters 59(1), 5255.
Chen, H, Hermann, MR, Kalantar, DH, Martinez, DA, Di Nicola, P, Tommasini, R, Landen, OL, Alessi, D, Bowers, M, Browning, D, Brunton, G, Budge, T, Crane, J, Di Nicola, JM, Doppner, T, Dixit, S, Erbert, G, Fishler, B, Halpin, J, Hamamoto, M, Heebner, J, Hernandez, VJ, Hohenberger, M, Homoelle, D, Honig, J, Hsing, W, Izumi, N, Khan, S, LaFortune, K, Lawson, J, Nagel, SR, Negres, RA, Novikova, L, Orth, C, Pelz, L, Prantil, M, Rushford, MM, Shaw, M, Sherlock, M, Sigurdsson, R, Wegner, P, Widmayer, C, Williams, GJ, Williams, W, Whitman, P and Yang, S (2017) High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility. Physics of Plasmas 24(3), 033112-1–033112-9.
Clarke, RJ, Neely, D, Edwards, RD, Wright, PNM, Ledingham, KWD, Heathcote, R, McKenna, P, Danson, CN, Brummitt, PA, Collier, JL, Hatton, PE, Hawkes, SJ, Hernandez-Gomez, C, Holligan, P, Hutchinson, MHR, Kidd, AK, Lester, WJ, Neville, DR, Norreys, PA, Pepler, DA, Winstone, TB, Wyatt, RWW and Wyborn, BE (2006) Radiological characterisation of photon radiation from ultra-high-intensity laser-plasma and nuclear interactions. Journal of Radiological Protection 26(3), 277286.
Cobble, JA, Palaniyappan, S, Johnson, RP, Shimada, T, Huang, C, Gautier, DC, Clark, DD, Falk, K and Jung, D (2016) Laser-driven micro-Coulomb charge movement and energy conversion to relativistic electrons. Physics of Plasmas 23(9), 093113-1–093113-12.
Courtois, C, Edwards, R, La Fontaine, AC, Aedy, C, Barbotin, M, Bazzoli, S, Biddle, L, Brebion, D, Bourgade, JL, Drew, D, Fox, M, Gardner, M, Gazave, J, Lagrange, JM, Landoas, O, Le Dain, L, Lefebvre, E, Mastrosimone, D, Pichoff, N, Pien, G, Ramsay, M, Simons, A, Sircombe, N, Stoeckl, C and Thorp, K (2011) High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction. Physics of Plasmas 18(2), 023101-1–023101-5.
Courtois, C, Edwards, R, La Fontaine, AC, Aedy, C, Bazzoli, S, Bourgade, JL, Gazave, J, Lagrange, JM, Landoas, O, Le Dain, L, Mastrosimone, D, Pichoff, N, Pien, G and Stoeckl, C (2013) Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography. Physics of Plasmas 20(8), 083114-1–083114-8
Edwards, RD, Sinclair, MA, Goldsack, TJ, Krushelnick, K, Beg, FN, Clark, EL, Dangor, AE, Najmudin, Z, Tatarakis, M, Walton, B, Zepf, M, Ledingham, KWD, Spencer, I, Norreys, PA, Clarke, RJ, Kodama, R, Toyama, Y and Tampo, M (2002). Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography. Applied Physics Letters 80(12), 21292131.
Fernandez, JC, Gautier, DC, Huang, CK, Palaniyappan, S, Albright, BJ, Bang, W, Dyer, G, Favalli, A, Hunter, JF, Mendez, J, Roth, M, Swinhoe, M, Bradley, PA, Deppert, O, Espy, M, Falk, K, Guler, N, Hamilton, C, Hegelich, BM, Henzlova, D, Ianakiev, KD, Iliev, M, Johnson, RP, Kleinschmidt, A, Losko, AS, McCary, E, Mocko, M, Nelson, RO, Roycroft, R, Cordoba, MAS, Schanz, VA, Schaumann, G, Schmidt, DW, Sefkow, A, Shimada, T, Taddeucci, TN, Tebartz, A, Vogel, SC, Vold, E, Wurden, GA and Yin, L (2017) Laser-plasmas in the relativistic-transparency regime: science and applications. Physics of Plasmas 24(5), 056702-1–056702-19.
Forster, RA and Godfrey, TNK (1985) Mcnp – a general Monte-Carlo code for neutron and photon transport. Lecture Notes in Physics 240, 3355.
Galy, J, Maucec, M, Hamilton, DJ, Edwards, R and Magill, J (2007) Bremsstrahlung production with high-intensity laser matter interactions and applications. New Journal of Physics 9, 23-1–23-18.
Hayashi, Y, Fukumi, A, Matsukado, K, Mori, M, Kotaki, H, Kando, M, Chen, LM, Daito, I, Kondo, S, Kanazawa, S, Yamazaki, A, Ogura, K, Nishiuchi, M, Kado, M, Sagisaka, A, Nakamura, S, Li, Z, Orimo, S, Homma, T and Daido, H (2006) Estimation of photon dose generated by a short pulse high power laser. Radiation Protection Dosimetry 121(2), 99107.
Kaw, P and Dawson, J (1970) Relativistic nonlinear propagation of laser beams in cold over dense plasmas. Physics of Fluids 13, 472-&.
La Fontaine, AC (2014) Photon dose produced by a high-intensity laser on a solid target. Journal of Physics D-Applied Physics 47(32), 325201-1–325201-18.
Lange, K and Carson, R (1984) Em reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography 8(2), 306316.
Liang, T, Bauer, J, Cimeno, M, Ferrari, A, Galtier, E, Granados, E, Lee, HJ, Liu, J, Nagler, B, Prinz, A, Rokni, S, Tran, H and Woods, M (2016) Radiation dose measurements for high-intensity laser interactions with solid targets at slac. Radiation Protection Dosimetry 172, 346355.
MacFarlane, JJ, Golovkin, IE and Woodruff, PR (2006) HELIOS-CR – a 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. Journal of Quantitative Spectroscopy & Radiative Transfer 99(1–3), 381397.
Malka, G and Miquel, JL (1996) Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Physical Review Letters 77(1), 7578.
Palaniyappan, S, Hegelich, BM, Wu, HC, Jung, D, Gautier, DC, Yin, L, Albright, BJ, Johnson, RP, Shimada, T, Letzring, S, Offermann, DT, Ren, J, Huang, CK, Horlein, R, Dromey, B, Fernandez, JC and Shah, RC (2012) Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas. Nature Physics 8(10), 763769.
Palaniyappan, S, Huang, CK, Gautier, DC, Hamilton, CE, Santiago, MA, Kreuzer, C, Sefkow, AB, Shah, RC and Fernandez, JC (2015) Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas. Nature Communications 6, 10170-1–10170-12.
Perry, MD, Sefcik, JA, Cowan, T, Hatchett, S, Hunt, A, Moran, M, Pennington, D, Snavely, R and Wilks, SC (1999) Hard x-ray production from high intensity laser solid interactions (invited). Review of Scientific Instruments 70(1), 265269.
Santala, MIK, Zepf, M, Watts, I, Beg, FN, Clark, E, Tatarakis, M, Krushelnick, K, Dangor, AE, McCanny, T, Spencer, I, Singhal, RP, Ledingham, KWD, Wilks, SC, Machacek, AC, Wark, JS, Allott, R, Clarke, RJ and Norreys, PA (2000) Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions. Physical Review Letters 84(7), 14591462.
Sefkow, AB, Bennett, GR, Geissel, M, Schollmeier, M, Franke, BC and Atherton, BW (2011) Efficiency enhancement for K-alpha x-ray yields from laser-driven relativistic electrons in solids. Physical Review Letters 106(23), 255002-1–255002-4.
Tobias, BT, Palaniyappan, S, Gautier, DC, Mendez, J, Burris-Mog, T, Huang, CK, Favalli, A, Hunter, JF, Espy, ME, Schmidt, DW, Nelson, RO, Sefkow, A, Shimada, T, Johnson, RP and Fernandez, JC (2017) Quantification of uncertainty in photon source spot size inference during laser-driven radiography experiments at TRIDENT. LA-UR-17-28604.
Wilks, SC and Kruer, WL (1997) Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE Journal of Quantum Electronics 33(11), 19541968.
Yang, B, Qiu, R, Li, JL, Lu, W, Wu, Z and Li, CY (2017) Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation. Radiation Physics and Chemistry 131, 1321.
Zhang, L, Zhang, GW, Chen, ZQ, Xing, YX, Cheng, JP and Xiao, YS (2007) X-ray spectrum estimation from transmission measurements using the expectation maximization method. 2007 IEEE Nuclear Science Symposium Conference Record, Vols 1-11: 3089-3093.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed