Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T00:37:05.163Z Has data issue: false hasContentIssue false

MeV bremsstrahlung X rays from intense laser interaction with solid foils

Published online by Cambridge University Press:  24 January 2019

S. Palaniyappan*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
D. C. Gautier
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
B. J. Tobias
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
J. C. Fernandez
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
J. Mendez
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
T. Burris-Mog
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
C. K. Huang
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
A. Favalli
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
J. F. Hunter
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
M. E. Espy
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
D. W. Schmidt
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
R. O. Nelson
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
A. Sefkow
Affiliation:
University of Rochester, New York 14627, USA
T. Shimada
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
R. P. Johnson
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
*
Author for correspondence: S. Palaniyappan, Los Alamos National Laboratory, Los Alamos, NM-87545, USA, E-mail: sasi@lanl.gov

Abstract

Laser-based compact MeV X-ray sources are useful for a variety of applications such as radiography and active interrogation of nuclear materials. MeV X rays are typically generated by impinging the intense laser onto ~mm-thick high-Z foil. Here, we have characterized such a MeV X-ray source from 120 TW (80 J, 650 fs) laser interaction with a 1 mm-thick tantalum foil. Our measurements show X-ray temperature of 2.5 MeV, flux of 3 × 1012 photons/sr/shot, beam divergence of ~0.1 sr, conversion efficiency of ~1%, that is, ~1 J of MeV X rays out of 80 J incident laser, and source size of 80 m. Our measurement also shows that MeV X-ray yield and temperature is largely insensitive to nanosecond laser contrasts up to 10−5. Also, preliminary measurements of similar MeV X-ray source using a double-foil scheme, where the laser-driven hot electrons from a thin foil undergoing relativistic transparency impinging onto a second high-Z converter foil separated by 50–400 m, show MeV X-ray yield more than an order of magnitude lower compared with the single-foil results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batha, SH, Aragonez, R, Archuleta, FL, Archuleta, TN, Benage, JF, Cobble, JA, Cowan, JS, Fatherley, VE, Flippo, KA, Gautier, DC, Gonzales, RP, Greenfield, SR, Hegelich, BM, Hurry, TR, Johnson, RP, Kline, JL, Letzring, SA, Loomis, EN, Lopez, FE, Luo, SN, Montgomery, DS, Oertel, JA, Paisley, DL, Reid, SM, Sanchez, PG, Seifter, A, Shimada, T and Workman, JB (2008) TRIDENT high-energy-density facility experimental capabilities and diagnostics. Review of Scientific Instruments 79(10), 10F305-1–10F305-3.Google Scholar
Brunel, F (1987) Not-so-resonant, resonant absorption. Physical Review Letters 59(1), 5255.Google Scholar
Chen, H, Hermann, MR, Kalantar, DH, Martinez, DA, Di Nicola, P, Tommasini, R, Landen, OL, Alessi, D, Bowers, M, Browning, D, Brunton, G, Budge, T, Crane, J, Di Nicola, JM, Doppner, T, Dixit, S, Erbert, G, Fishler, B, Halpin, J, Hamamoto, M, Heebner, J, Hernandez, VJ, Hohenberger, M, Homoelle, D, Honig, J, Hsing, W, Izumi, N, Khan, S, LaFortune, K, Lawson, J, Nagel, SR, Negres, RA, Novikova, L, Orth, C, Pelz, L, Prantil, M, Rushford, MM, Shaw, M, Sherlock, M, Sigurdsson, R, Wegner, P, Widmayer, C, Williams, GJ, Williams, W, Whitman, P and Yang, S (2017) High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility. Physics of Plasmas 24(3), 033112-1–033112-9.70+keV)+x-ray+conversion+efficiency+measurement+on+the+ARC+laser+at+the+National+Ignition+Facility.+Physics+of+Plasmas+24(3),+033112-1–033112-9.>Google Scholar
Clarke, RJ, Neely, D, Edwards, RD, Wright, PNM, Ledingham, KWD, Heathcote, R, McKenna, P, Danson, CN, Brummitt, PA, Collier, JL, Hatton, PE, Hawkes, SJ, Hernandez-Gomez, C, Holligan, P, Hutchinson, MHR, Kidd, AK, Lester, WJ, Neville, DR, Norreys, PA, Pepler, DA, Winstone, TB, Wyatt, RWW and Wyborn, BE (2006) Radiological characterisation of photon radiation from ultra-high-intensity laser-plasma and nuclear interactions. Journal of Radiological Protection 26(3), 277286.Google Scholar
Cobble, JA, Palaniyappan, S, Johnson, RP, Shimada, T, Huang, C, Gautier, DC, Clark, DD, Falk, K and Jung, D (2016) Laser-driven micro-Coulomb charge movement and energy conversion to relativistic electrons. Physics of Plasmas 23(9), 093113-1–093113-12.Google Scholar
Courtois, C, Edwards, R, La Fontaine, AC, Aedy, C, Barbotin, M, Bazzoli, S, Biddle, L, Brebion, D, Bourgade, JL, Drew, D, Fox, M, Gardner, M, Gazave, J, Lagrange, JM, Landoas, O, Le Dain, L, Lefebvre, E, Mastrosimone, D, Pichoff, N, Pien, G, Ramsay, M, Simons, A, Sircombe, N, Stoeckl, C and Thorp, K (2011) High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction. Physics of Plasmas 18(2), 023101-1–023101-5.Google Scholar
Courtois, C, Edwards, R, La Fontaine, AC, Aedy, C, Bazzoli, S, Bourgade, JL, Gazave, J, Lagrange, JM, Landoas, O, Le Dain, L, Mastrosimone, D, Pichoff, N, Pien, G and Stoeckl, C (2013) Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography. Physics of Plasmas 20(8), 083114-1–083114-8Google Scholar
Edwards, RD, Sinclair, MA, Goldsack, TJ, Krushelnick, K, Beg, FN, Clark, EL, Dangor, AE, Najmudin, Z, Tatarakis, M, Walton, B, Zepf, M, Ledingham, KWD, Spencer, I, Norreys, PA, Clarke, RJ, Kodama, R, Toyama, Y and Tampo, M (2002). Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography. Applied Physics Letters 80(12), 21292131.Google Scholar
Fernandez, JC, Gautier, DC, Huang, CK, Palaniyappan, S, Albright, BJ, Bang, W, Dyer, G, Favalli, A, Hunter, JF, Mendez, J, Roth, M, Swinhoe, M, Bradley, PA, Deppert, O, Espy, M, Falk, K, Guler, N, Hamilton, C, Hegelich, BM, Henzlova, D, Ianakiev, KD, Iliev, M, Johnson, RP, Kleinschmidt, A, Losko, AS, McCary, E, Mocko, M, Nelson, RO, Roycroft, R, Cordoba, MAS, Schanz, VA, Schaumann, G, Schmidt, DW, Sefkow, A, Shimada, T, Taddeucci, TN, Tebartz, A, Vogel, SC, Vold, E, Wurden, GA and Yin, L (2017) Laser-plasmas in the relativistic-transparency regime: science and applications. Physics of Plasmas 24(5), 056702-1–056702-19.Google Scholar
Forster, RA and Godfrey, TNK (1985) Mcnp – a general Monte-Carlo code for neutron and photon transport. Lecture Notes in Physics 240, 3355.Google Scholar
Galy, J, Maucec, M, Hamilton, DJ, Edwards, R and Magill, J (2007) Bremsstrahlung production with high-intensity laser matter interactions and applications. New Journal of Physics 9, 23-1–23-18.Google Scholar
Hayashi, Y, Fukumi, A, Matsukado, K, Mori, M, Kotaki, H, Kando, M, Chen, LM, Daito, I, Kondo, S, Kanazawa, S, Yamazaki, A, Ogura, K, Nishiuchi, M, Kado, M, Sagisaka, A, Nakamura, S, Li, Z, Orimo, S, Homma, T and Daido, H (2006) Estimation of photon dose generated by a short pulse high power laser. Radiation Protection Dosimetry 121(2), 99107.Google Scholar
Kaw, P and Dawson, J (1970) Relativistic nonlinear propagation of laser beams in cold over dense plasmas. Physics of Fluids 13, 472-&.Google Scholar
La Fontaine, AC (2014) Photon dose produced by a high-intensity laser on a solid target. Journal of Physics D-Applied Physics 47(32), 325201-1–325201-18.Google Scholar
Lange, K and Carson, R (1984) Em reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography 8(2), 306316.Google Scholar
Liang, T, Bauer, J, Cimeno, M, Ferrari, A, Galtier, E, Granados, E, Lee, HJ, Liu, J, Nagler, B, Prinz, A, Rokni, S, Tran, H and Woods, M (2016) Radiation dose measurements for high-intensity laser interactions with solid targets at slac. Radiation Protection Dosimetry 172, 346355.Google Scholar
MacFarlane, JJ, Golovkin, IE and Woodruff, PR (2006) HELIOS-CR – a 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. Journal of Quantitative Spectroscopy & Radiative Transfer 99(1–3), 381397.Google Scholar
Malka, G and Miquel, JL (1996) Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Physical Review Letters 77(1), 7578.Google Scholar
Palaniyappan, S, Hegelich, BM, Wu, HC, Jung, D, Gautier, DC, Yin, L, Albright, BJ, Johnson, RP, Shimada, T, Letzring, S, Offermann, DT, Ren, J, Huang, CK, Horlein, R, Dromey, B, Fernandez, JC and Shah, RC (2012) Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas. Nature Physics 8(10), 763769.Google Scholar
Palaniyappan, S, Huang, CK, Gautier, DC, Hamilton, CE, Santiago, MA, Kreuzer, C, Sefkow, AB, Shah, RC and Fernandez, JC (2015) Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas. Nature Communications 6, 10170-1–10170-12.Google Scholar
Perry, MD, Sefcik, JA, Cowan, T, Hatchett, S, Hunt, A, Moran, M, Pennington, D, Snavely, R and Wilks, SC (1999) Hard x-ray production from high intensity laser solid interactions (invited). Review of Scientific Instruments 70(1), 265269.Google Scholar
Santala, MIK, Zepf, M, Watts, I, Beg, FN, Clark, E, Tatarakis, M, Krushelnick, K, Dangor, AE, McCanny, T, Spencer, I, Singhal, RP, Ledingham, KWD, Wilks, SC, Machacek, AC, Wark, JS, Allott, R, Clarke, RJ and Norreys, PA (2000) Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions. Physical Review Letters 84(7), 14591462.Google Scholar
Sefkow, AB, Bennett, GR, Geissel, M, Schollmeier, M, Franke, BC and Atherton, BW (2011) Efficiency enhancement for K-alpha x-ray yields from laser-driven relativistic electrons in solids. Physical Review Letters 106(23), 255002-1–255002-4.Google Scholar
Tobias, BT, Palaniyappan, S, Gautier, DC, Mendez, J, Burris-Mog, T, Huang, CK, Favalli, A, Hunter, JF, Espy, ME, Schmidt, DW, Nelson, RO, Sefkow, A, Shimada, T, Johnson, RP and Fernandez, JC (2017) Quantification of uncertainty in photon source spot size inference during laser-driven radiography experiments at TRIDENT. LA-UR-17-28604.Google Scholar
Wilks, SC and Kruer, WL (1997) Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE Journal of Quantum Electronics 33(11), 19541968.Google Scholar
Yang, B, Qiu, R, Li, JL, Lu, W, Wu, Z and Li, CY (2017) Photon dose estimation from ultraintense laser-solid interactions and shielding calculation with Monte Carlo simulation. Radiation Physics and Chemistry 131, 1321.Google Scholar
Zhang, L, Zhang, GW, Chen, ZQ, Xing, YX, Cheng, JP and Xiao, YS (2007) X-ray spectrum estimation from transmission measurements using the expectation maximization method. 2007 IEEE Nuclear Science Symposium Conference Record, Vols 1-11: 3089-3093.Google Scholar