Skip to main content Accessibility help
×
Home

Magnetosonic wave-aided terahertz emission by nonlinear mixing of lasers in plasmas

  • Narender Kumar (a1) (a2), Ram Kishor Singh (a3), R. Uma (a1) and R. P. Sharma (a1)

Abstract

A scheme of phase-matched terahertz generation by beating two co-propagating lasers in magnetized plasma, in the presence of a magnetosonic wave (MSW), is developed. The beat frequency ponderomotive force of the lasers imparts an oscillatory drift to electrons. The electron drift velocity couples with the electron density perturbation associated with the MSW to produce an irrotational nonlinear current $\left(\nabla \times {\vec J}\;{}^{\rm NL}\ne 0\right)$ . The beat current density resonantly excites a THz (Terahertz) radiation when the phase-matching conditions are satisfied. The MSW mediates the phase matching. At 9.6 and 10.6 µm wavelengths, and background magnetic field of 285 kG, one may achieve normalized THz wave amplitude of the order of 10−3 and one obtains the ratio of THz power to pump power of the order of 10−6.

Copyright

Corresponding author

Author for correspondence: N. Kumar, Department of Physics, Sri Venkateswara College, University of Delhi, New Delhi110021, India. E-mail: narenderk@svc.ac.in

References

Hide All
Bhasin, L and Tripathi, VK (2009) Terahertz generation via optical rectification of x-mode laser in a rippled density magnetized plasma. Physics of Plasmas 16, 103105.
Dai, J, Karpowicz, N and Zhang, XC (2009) Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters 103, 023001.
D'amico, C, Houard, A, Franco, M, Prade, B, Mysyrowicz, A, Couairon, A and Tikhonchuk, VT (2007) Conical forward THz emission from femtosecond-laser-beam filamentation in air. Physical Review Letters 98, 235002.
Davies, AG, Linfield, EH and Jonston, MB (2002) The development of terahertz sources and their applications. Physics in Medicine & Biology 47, 3679.
Ginzburg, VL (1970) The Propagation of Electromagnetic Waves in Plasmas. Oxford: Pergamon.
Hamster, H, Sullivan, A, Gordon, S, White, W and Falcone, RW (1993) Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters 71, 2725.
Han, PY, Cho, CG and Zhang, X-C (2000) Time-domain transillumination of biological tissues with terahertz pulses. Optics Letters 25, 242244.
Hirata, A, Kosugi, T, Takahashi, H, Yamaguchi, R, Nakajima, F, Furuta, T, Ito, H, Sugahara, H, Sato, Y and Nagatsuma, T (2006) 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission. IEEE Transactions on Microwave Theory and Techniques 54, 19371944.
Houard, A, Liu, Y, Prade, B, Tikhonchuk, VT and Mysyrowicz, A (2008) Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Physical Review Letters 100, 255006.
Huang, HH, Nagashima, T, Hsu, WH, Juodkazis, S and Hatanaka, K (2018) Dual THz wave and X-ray generation from a water film under femtosecond laser excitation. Nanomaterials 8, 523.
Kohler, R, Tredicucc, IA, Beltram, F, Beere, HE, Linfield, EH, Davies, AG, Ritchie, DA, Iotti, RC and Rossi, F (2002) Terahertz semiconductor heterostructure laser. Nature 417, 156159.
Kumar, N, Singh, RK, Sharma, S, Uma, R and Sharma, RP (2018) Numerical simulation of turbulence and terahertz magnetosonic waves generation in collisionless plasmas. Physics of Plasmas 25, 012312.
Sharma, RP and Singh, RK (2014) Terahertz generation by two cross focused laser beams in collisional plasmas. Physics of Plasmas 21, 073101.
Singh, M and Sharma, RP (2013) Generation of THz radiation by laser plasma interaction. Contributions to Plasma Physics 53, 540548.
Singh, RK, Singh, M, Rajouria, SK and Sharma, RP (2017) High power terahertz radiation generation by optical rectification of a shaped pulse laser in axially magnetized plasma. Physics of Plasmas 24, 073114.
Tonouchi, M (2007) Cutting-edge terahertz technology. Nature Photonics 1, 97105.
Wallace, VP, Anthony, JF, Pickwell, E, Pye, RJ, Taday, PF, Flanagan, N and Thomas, H (2006) Terahertz pulsed spectroscopy of human basal cell carcinoma. Applied Spectroscopy 60, 11271133.
Wang, XY and Lin, Y (2003) Generation of nonlinear Alfvén and magnetosonic waves by beam–plasma interaction. Physics of Plasmas 10, 3528.
Wu, HC, Sheng, ZM, Dong, QL, Xu, H and Zhang, J (2007) Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasmas. Physical Review E 75, 016407.

Keywords

Related content

Powered by UNSILO

Magnetosonic wave-aided terahertz emission by nonlinear mixing of lasers in plasmas

  • Narender Kumar (a1) (a2), Ram Kishor Singh (a3), R. Uma (a1) and R. P. Sharma (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.