Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T11:59:11.564Z Has data issue: false hasContentIssue false

Low-fluence laser–target coupling

Published online by Cambridge University Press:  09 March 2009

P. Combis
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
B. Cazalis
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
J. David
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
A. Froger
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
M. Louis-Jacquet
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
B. Meyer
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
G. Nierat
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
A. Saleres
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
G. Sibille
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
G. Thiell
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France
F. Wagon
Affiliation:
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil-Valenton, 94195 Villeneuve-Saint-Georges, France

Abstract

Low-fluence laser interaction with metallic target is investigated in a wide range of irradiance, from 5 × 106 to 1011 W/cm2, with 4- and 30-ns laser-pulse durations and 1.06-μm wavelength. Edge effects are avoided by means of large surfaces of irradiation (5 cm2). Specific diagnostics such as a ballistic pendulum and a piezoelectric quartz gauge are developed to measure the total momentum imparted to the target, as well as the temporal evolution of the stress at the rear side of the target. Specular reflection and sidescattering of the laser light from the target are also measured. The behavior of 2024 aluminum alloy is particularly studied. The results are interpreted in terms of liquid-vapor transition and change in laser absorption.

In light of experimental data, the theoretical analysis of surface absorption is reviewed, showing the dependence on metal temperature and laser wavelength. The thermal and mechanical coupling is also calculated.

Numerical simulations are performed with a 1–D Lagrangian hydrodynamic code including modifications for low-pressure regimes. The multiphase equation of state is extended to take into account negative pressures. An elastoplastic module is introduced into the code. A quite good agreement is obtained with the measurements of the stress and of the mechanical coupling coefficient.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, S. L. 1962 Phys. Rev. 126, 413.CrossRefGoogle Scholar
Anisimov, S. I. 1968 Sov. Phys. JETP 27, 182.Google Scholar
Anisimov, S. I. et al. 1980 Sov. Phys. JETP 51, 802.Google Scholar
Arnold, G. S. 1984 Appl. Opt. 23, 1434.CrossRefGoogle Scholar
Ashcroft, N. W. & Sturm, K.1971Phys. Rev. B 3, 1898.Google Scholar
Ashcroft, N. W. & Mermin, N. D. 1987 Solid State Physics (Holt, Rinehart and Winston, New York), p. 284.Google Scholar
Banfi, G. P. & Gobbi, P. G. 1979 Plasma Phys. 21, 845.CrossRefGoogle Scholar
Batanov, V. A. et al. 1973 Sov. Phys. JETP 36, 311.Google Scholar
Baus, M. & Hansen, J.P. 1980 Phys. Rep. 59 (No. 1).CrossRefGoogle Scholar
Bennett, F. D. 1965 Phys. Fluids 8, 1425.CrossRefGoogle Scholar
Bennett, H. E., Silver, M. & Ashley, E. J. 1963 J. Opt. Soc. Am. 53, 1089.CrossRefGoogle Scholar
Brückner, M., Schaefer, J. H. & Uhlenbusch, J. 1989 J. Appl. Phys. 66, 1326.CrossRefGoogle Scholar
Brust, D. 1970 Phys. Rev. B 2, 818.CrossRefGoogle Scholar
Burgess, T. 1985 Presented at the 5th IEEE Pulsed Power Conference,Arlington VA.Google Scholar
Dreehsen, H. G. et al. 1984 J. Appl. Phys. 56, 238.CrossRefGoogle Scholar
Duzy, C. et al. 1980 Appl. Phys. Lett. 37, 542.CrossRefGoogle Scholar
Ebeling, W. et al. 1984 in Transport Properties of Dense Plasmas (Birkhäuser, Verlag, Basil), p. 5.CrossRefGoogle Scholar
Ehrenreich, H., Philipp, H. R. & Segall, B. 1963 Phys. Rev. 132, 1918.CrossRefGoogle Scholar
Ford, G. W. & Weber, W. H. 1984 Phys. Rep. 113 (No. 4).CrossRefGoogle Scholar
Gregg, D. W. & Thomas, S. J. 1966 J. Appl. Phys. 37, 2787.CrossRefGoogle Scholar
Hwa-Fu, Chen et al. 1987 Phys. Rev. B 36, 6261.Google Scholar
Ichimaru, S. et al. 1987 Phys. Rep. 149 (Nos. 2 and 3).CrossRefGoogle Scholar
Knight, C. J. 1979 AIAA J. 17, 513.CrossRefGoogle Scholar
Kubo, R. 1957 J. Phys. Soc. Jpn. 12, 570.CrossRefGoogle Scholar
Maksimov, E. C. et al. 1988 J. Phys. F 18, 833.CrossRefGoogle Scholar
Mathewson, A. G. & Myers, H. P. 1972 J. Phys. F 2, 403.CrossRefGoogle Scholar
Mattis, D. C. & Bardeen, J. 1958 Phys. Rev. 11, 412.CrossRefGoogle Scholar
Mattis, D. C. & Dresselhauss, G. 1958 Phys. Rev. 11, 403.CrossRefGoogle Scholar
Meyer, B. & Thiell, G. 1984 Phys. Fluids 27, 302.CrossRefGoogle Scholar
Milchberg, H. M. et al. 1988 Phys. Rev. Lett. 61, 2364.CrossRefGoogle Scholar
Newstein, M. & Solimene, N. 1981 IEEE J. Quantum Electron. QE–17, 2085.CrossRefGoogle Scholar
Phipps, C. R. et al. 1988 J. Appl. Phys. 64, 1083.CrossRefGoogle Scholar
Ready, J. F. 1965 J. Appl. Phys. 36, 462.CrossRefGoogle Scholar
Rinker, G. A. 1985 Phys. Rev. B 31, 4207.CrossRefGoogle Scholar
Root, R. G. 1980 J. Phys. Colloq. 41, C9–59.CrossRefGoogle Scholar
Rosen, D. I. et al. 1982a J. Appl. Phys. 53, 3190.CrossRefGoogle Scholar
Rosen, D. I. et al. 1982b J. Appl. Phys. 53, 5882.Google Scholar
Rozsnyai, B. F. 1979 J. Quant. Spectrosc. Radiat. Transfer 22, 337.CrossRefGoogle Scholar
Saleres, A. et al. 1991 Revue Scientifique et Technique de la Défense.Google Scholar
Shui, V. H., Kivel, B. & Weyl, G. M. 1978 J. Quant. Spectrosc. Radiat. Transfer 20, 627.CrossRefGoogle Scholar
Skupsky, S. 1987 Phys. Rev. A 36, 5701.CrossRefGoogle Scholar
Smith, D. Y. & Segall, B. 1986 Phys. Rev. B 34, 5191.CrossRefGoogle Scholar
Szmulowicz, F. & Segall, B. 1981 Phys. Rev. B 24, 892.CrossRefGoogle Scholar
Toussopyat-Nelip, I. I. & Triger, S. A. 1988 Teplofiz. Vys. Temp. 26, 417.Google Scholar
Tups, H. & Syassen, K. 1984 J. hys. F 14, 2753.Google Scholar
Ursu, I. et al. 1984 J. Phys. D 17, 1315.CrossRefGoogle Scholar
Van Vliet, K. M. 1978 J. Math. Phys. 19, 1345.CrossRefGoogle Scholar
Wilkins, M. L. 1981 LLNL Report No. UCRL–7322 (Revision 2).Google Scholar
Woodroffe, J. A., Hsia, J. & Ballantyne, A. 1980 Appl. Phys. Lett. 36, 14.CrossRefGoogle Scholar
Wooten, F. 1972 Optical Properties of Solids (Academic, New York), p. 52.Google Scholar
Ying, R. & Kalman, G. 1989 Phys. Rev. A. 40, 3927.CrossRefGoogle Scholar