Skip to main content Accessibility help
×
Home

Laser-generated plasmas by graphene nanoplatelets embedded into polyethylene

  • L. Torrisi (a1), G. Ceccio (a1), N. Restuccia (a1), E. Messina (a2), P. G. Gucciardi (a2) and M. Cutroneo (a3)...

Abstract

Graphene micrometric particles have been embedded into polyethylene at different concentrations by using chemical–physical processes. The synthesized material was characterized in terms of mechanical and optical properties, and Raman spectroscopy. Obtained targets were irradiated by using a Nd:YAG laser at intensities of the order of 1010 W/cm2 to generate non-equilibrium plasma expanding in vacuum. The laser–matter interaction produces charge separation effects with consequent acceleration of protons and carbon ions. Plasma was characterized using time-of-flight measurements of the accelerated ions. Applications of the produced targets in order to generate carbon and proton ion beams from laser-generated plasma are presented and discussed.

Copyright

Corresponding author

Address correspondence and reprint requests to: L. Torrisi, Dip.to di Scienze Fisiche MIFT, Università di Messina, V.le F.S. D'Alcontres 31, 98166 S. Agata, Messina, Italy. E-mail: lorenzo.torrisi@unime.it

References

Hide All
Andrews, R. & Weisenberger, M.C. (2008). Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Science 8, 3137.
Balandin, A.A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569581.
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N. (2008). Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902907.
Bolotin, K.I., Sikes, K., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. & Stormer, H. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351355.
Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A.C. (2010). Graphene photonics and optoelectronics. Nat. Photonics 4, 611622.
Chin, S.L., Wang, T.J., Marceau, C., Wu, J., Liu, J.S., Kosareva, O., Panov, N., Chen, Y.P., Daigle, J.F., Yuan, S., Azarm, A., Liu, W.W., Seideman, T., Zeng, H.P., Richardson, M., Li, R. & Xu, Z.Z. (2011). Advances in intense femtosecond laser Filamentation in air. Laser Phys. 22, 153. Pleiades Publishing Ltd.
D'Andrea, M., Irrera, A., Fazio, B., Foti, A., Messina, E., Maragò, O.M., Kessentini, S., Artoni, P., David, C. & Gucciardi, P.G. (2015). Red shifted spectral dependence of the SERS enhancement in a random array of gold nanoparticles covered with a silica shell: Extinction versus scattering. J. Opt. 17, 114016.
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Bristol: IOP Publishing.
Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K.S., Roth, S. & Geim, A.K. (2006). Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401.
Gammino, S., Torrisi, L., Ciavola, G., Andò, L., Celona, L., Maciagli, S., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Mezzasalma, A.M., Gentile, C., Picciotto, A., Wolowski, J., Woryna, E., Badziak, J., Parys, P., Hitz, D. & Shirkov, G.D. (2004). The electron cyclotron resonance coupled to laser ion source for charge enhancement experiment: Production of high intensity ion beams by means of a hybrid ion source. J. Appl. Phys. 96, 29612968.
Garcia, M.A. (2012). Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D: Appl. Phys. 45, 389501.
Haar, S., El Gemayel, M., Shin, Y.Y., Melinte, G., Squillaci, M.A., Ersen, O., Casiraghi, C., Ciesielski, A. & Samori, P. (2005). Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of N-octylbenzene. Sci. Rep. 5, 16684.
Hasan, T., Sun, Z., Wang, F., Bonaccorso, F., Tan, P.H., Rozhin, A.G. & Ferrari, A.C. (2009). Nanotube–polymer composites for ultrafast photonics. Adv. Mater. 21, 38743899.
Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S. & Lee, J.H. (2010). Recent advances in graphene based polymer composites. Progr. Polym. Sci. 35, 13501375.
Li, D., Müller, M.B., Gilje, S., Kaner, R.B. & Wallace, G.G. (2008). Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101105.
Messina, E., Leone, N., Foti, A., Di Marco, G., Riccucci, C., Di Carlo, G., Di Maggio, F., Cassata, A., Gargano, L., D'Andrea, C., Fazio, B., Maragò, O.M., Robba, B., Vasi, C., Ingo, G.M. & Gucciardi, P.G. (2016). Double-wall nanotubes and graphene nanoplatelets for hybrid conductive adhesives with enhanced thermal and electrical conductivity. ACS Appl. Mater. Interfaces 8, 2324423259.
Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M. & Geim, A.K. (2008). Fine structure constant defines visual transparency of graphene. Science 320, 1308.
Ni, Z.H., Yu, T., Lu, Y.H., Wang, Y.Y., Ping Feng, Y. & Shen, Z.X. (2008). Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 23012305.
NIST. (2017). Atomic Spectra Database Ionization Energies Data, actual website 2017: http://physics.nist.gov/cgi-bin/ASD/ie.pl
Noack, J., Hammer, D.X., Noojin, G.D., Rockwell, B.A. & Vogel, A. (1998). Influence of pulse duration on mechanical effects after laser-induced breakdown in water. J. Appl. Phys. 82, 74887495.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. & Firsov, A.A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197200.
Potschke, P., Bhattacharyya, A.R. & Janke, A. (2003). Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 44, 80618069.
Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. & Koratkar, N. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 38843890.
Sang, X.M., Yang, X.J., Cui, Z.D., Zhu, S.L. & Sheng, J. (2005). Nano-SiO2 doped polystyrene materials for inertial confinement fusion targets. J. Macromol. Sci. B: Phys. 44, 237248.
Schillaci, F., Anzalone, A., Cirrone, G.A.P., Carpinelli, M., Cuttone, G., Cutroneo, M., De Martinis, C., Giove, D., Korn, G., Maggiore, M., Manti, L., Margarone, D., Musumarra, A., Perozziello, F.M., Petrovic, I., Pisciotta, P., Renis, M., Ristic-Fira, A., Romano, F., Romano, F.P., Schettino, G., Scuderi, V., Torrisi, L., Tramontana, A. & Tudisco, S. (2014). ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines. J. Phys.: Conf. Ser. 508, 012010.
Schrader, B. (1989). Raman/Infrared Atlas of Organic Compounds. Weinheim: VCH. ISBN 3–527–26969-X.
Shahil, K.M. & Balandin, A.A. (2012). Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12, 861867.
Shirkov, G.D. & Zschomack, G. (1996). Electron Impact Ion Source for Charged Heavy Ions. Gottingen: ViewegPubl.
Spyrou, K., Gournis, D. & Rudolf, P. (2013). Hydrogen storage in graphene-based materials: Efforts towards enhanced hydrogen absorption. ECS J. Solid State Sci. Technol. 2, M3160M3169.
Torrisi, L. (2014 a). Ion energy enhancement from TNSA plasmas obtained from advanced targets. Laser Part. Beams 32, 383389.
Torrisi, L. (2014 b). Ion acceleration and D–D nuclear fusion in laser-generated plasma from advanced deuterated polyethylene. Molecules 19, 1705217065.
Torrisi, L., Calcagno, L., Giulietti, D., Cutroneo, M., Zimbone, M. & Skala, J. (2015 a). Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime. Nucl. Instrum. Methods B 355, 221226.
Torrisi, L., Caridi, F. & Giuffrida, L. (2011). Protons and ion acceleration from thick targets at 1010 W/cm2 laser pulse intensity. Laser Part. Beams 29, 2937.
Torrisi, L., Ceccio, G. & Cutroneo, M. (2016). Laser-generated plasma by carbon nanoparticles embedded into polyethylene. Nucl. Instrum. Methods Phys. Res. B 375, 9399.
Torrisi, L., Cutroneo, M., Andò, L. & Ullschmied, J. (2013). Thomson parabola spectrometry for gold laser-generated plasmas. Phys. Plasmas 20, 023106.
Torrisi, L., Cutroneo, M. & Ceccio, G. (2015 b). Effect of metallic nanoparticles in thin foils for laser ion acceleration. Phys. Scr. 9, 015603.
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self-focusing effect in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.
Torrisi, L., Visco, A.M., Campo, N. & Caridi, F. (2010). Pulsed laser treatments of polyethylene films. Nucl. Instrum. Methods Phys. Res. B 268, 31173121.
Wolowski, J., Badziak, J., Parys, P., Rosinski, M., Ryc, L., Jungwirth, K., Krasa, J., Laska, L., Pfeifer, M., Rohlena, K., Ullschmied, J., Mezzasalma, A., Torrisi, L., Gammino, S., Hora, H. & Boody, F.P. (2004). The influence of pre-pulse plasma on ion and X-ray emission from Ta plasma produced by a high-energy laser pulse. Czech. J. Phys. 54 (Suppl. C), C385C390.
Yu, L.Z., Zhiming, T., George, P.S. & Dan, L. (2015). Scalable production of graphene via wet chemistry: Progress and challenges. Mater. Today 18, 73.
Zeil, K., Kraft, S.D., Bock, S., Bussmann, M., Cowan, T.E., Kluge, T., Metzkes, J., Richter, T., Sauerbrey, R. & Schramm, U. (2010). The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys. 12, 045015.

Keywords

Laser-generated plasmas by graphene nanoplatelets embedded into polyethylene

  • L. Torrisi (a1), G. Ceccio (a1), N. Restuccia (a1), E. Messina (a2), P. G. Gucciardi (a2) and M. Cutroneo (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed