Skip to main content Accessibility help
×
Home

Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2

  • S. Yu. Gus'kov (a1), N.N. Demchenko (a1), A. Kasperczuk (a2), T. Pisarczyk (a2), Z. Kalinowska (a2), T. Chodukowski (a2), O. Renner (a3), M. Smid (a3), E. Krousky (a4), M. Pfeifer (a4), J. Skala (a4), J. Ullschmied (a4) and P. Pisarczyk (a5)...

Abstract

The paper is directed to the study of high-temperature plasma and ablation plasma formation as well as efficiency of the laser energy transfer to solid targets irradiated by laser pulses with intensities of 1–50 PW/cm2 and duration of 200–300 ps, i.e., at conditions corresponding to the characteristics of the laser spike designed to generate the igniting shock wave in the shock ignition concept. The experiments have been performed at Prague Asterix Laser System. The iodine laser delivered 250 ps (full width at half maximum) pulses with the energy in the range of 100–600 J at the first (λ1 = 1.315 µm) and third (λ3 = 0.438 µm) harmonic frequencies. The focal spot radius of the laser beam on the surface of Al or Cu targets made was gradually decreased from 160 to 40 µm. The diagnostic data collected using three-frame interferometry, X-ray spectroscopy, and crater replica technique were interpreted by two-dimensional numerical and analytical modeling which included generation and transport of fast electrons. The coupling parameter Iλ2 was varied in the range of 1 × 1014−8 × 1016 Wμm2/cm2 covering the regimes of weak to intense fast electron generation. The dominant contribution of fast electron energy transfer into the ablation process and shock wave generation was found when using the first harmonic laser radiation, the focal spot radius of 40–100 µm, and the laser energy of 300–600 J.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Laser-driven ablation through fast electrons in PALS-experiment at the laser radiation intensity of 1–50 PW/cm2
      Available formats
      ×

Copyright

Corresponding author

Address correspondence and reprint requests to: T. Pisarczyk, Institute of Plasma Physics and Laser Microfusion, 23 Hery St., 00-908 Warsaw, Poland. E-mail: tadeusz.pisarczyk@ifpilm.pl

References

Hide All
Atzeni, S., Schiavi, A., Honrubia, J.J., Ribeyre, X., Schurtz, G., Nicolai, Ph., Olazabal-Loumé, M., Bellei, C., Evans, R.G. & Davies, J.R. (2008). Fast ignitor target for the HiPER project. Phys. Plasmas 15, 056311.
Batani, D., Koenig, Baton, S., Perez, F., Gizzi, L.A., Koester, P., Labate, L., Honrubia, J., Antonelli, L., Morace, A., Volpe, L., Santos, J., Schurtz, G., Hulin, S., Ribeyre, X., Fourment, C., Nicolai, P., Vauzour, B., Gremillet, L., Nazarov, W., Pasley, J., Richetta, M., Lancaster, K., Spindloe, Ch., Tolley, M., Neely, D., Kozlová, M., Nejdl, J., Rus, B., Wolowski, J., Badziak, J. & Dorchies, F. (2011). The HiPER project for inertial confinement fusion and some experimental results on advanced ignition schemes. Plasma Phys. Contr. Fusion 53, 124041.
Berestetskii, V.B., Lifshitz, E.M. & Pitaevskii, L.P. (1982). Quantum Electrodynamics. New York: Elseiver Ltd.
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Solodov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001.
Bolkhovitinov, E.A., Vasin, B.L., Doskach, I.Ya., et al. (2004). Crater formation in a target under the action of a high-power laser pulse. Plasma Phys. Repts. 30, 205.
Freidberg, J.P., Mitchell, R.W., Morze, R.L. & Rudsinski, L.I. (1972). Resonant absorption of laser light by plasma targets. Phys. Rev. Lett. 28, 795.
Ginzburg, V.L. (1970). The Propagation of Electromagnetic Waves in Plasmas. Oxford: Pergamon Press.
Grigor'ev, I.S. & Meilikhov, E.Z. (1991). Physical Values Handbook. Moscow: Energoatomizdat.
Gus'kov, K.S. & Gus'kov, S. Yu. (2001). Efficiency of ablation loading and the limit destruction depth of material irradiated by a high-power laser pulse. Quant. Electron. 31, 305.
Gus'kov, S. Yu., Demchenko, N.N., Makarov, K.N., Rozanov, V.B., Satov, Yu. A. & Sharkov, B. Yu. (2011). Efficiency of generation of highly ionized atoms under resonance absorption of CO2-laser radiation. Quant. Electron. 41, 886.
Gus'kov, S. Yu., Kasperczuk, A., Pisarczyk, T., Borodziuk, B., Kalal, M., Limpouch, J., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2006). Efficiency of ablative loading of material upon the fast-electron transfer of absorbed laser energy. Quant. Electron. 36, 429.
Gus'kov, S.Yu., Kasperczuk, A., Pisarczyk, T., et al. (2007). Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse. J. Exper. Theor. Phys. 105, 793.
Gus'kov, S., Ribeyre, X., Touati, M., et al. (2012). Ablation pressure driven by an energetic electron beam in a dense plasma. Phys. Rev. Lett. 102, 255004.
Gus'kov, S.Yu. & Zverev, V.V. (1987). The theory of target compression by long wave laser emission. In Energy Transfer by Fast Electrons in Spherical Laser Target (Sklizkov, G.V., Ed.). New York: Nova Science Publishers.
Gus'kov, S.Yu., Borodziuk, S., Kalal, M., et al. (2004). Generation of shock waves and formation of crater in a solid material irradiated by a short laser pulse. Quant. Electr. 34, 989.
Gus'kov, S.Yu., Zverev, V.V. & Rozanov, V.B. (1983). Steady-state model of the corona of spherical laser targets allowing for energy transfer by fast electrons. Quant. Electron. 13, 498.
Imshennik, V.S. (1960). Isothermal expansion of a gas cloud. Sov. Phys. Dokl. 5, 263.
Jacquemot, S., Amiranoff, F., Baton, S.D., et al. (2011). Studying ignition schemes on European laser facilities. Nucl. Fusion 51, 094025.
Klimo, O., Tikhonchuk, V.T., Rebeyre, X., et al. (2011). Laser-plasma interaction studies in the context of shock ignition – Transition from collisional to collisionless absorption. Phys. Plasmas 18, 082709.
Landau, L.D. & Lifshitz, E.M. (1965). Quantum Mechanics. Oxford: Pergamon Press.
Lebo, I.G., Demchenko, N.N., Iskakov, A.B., Limpouch, J., Rozanov, V.B. & Tishkin, V.T. (2004). Simulation of high intensity laser-plasma interactions by use of the 2D Lagrangian code “ATLANT-HE.” Laser Part. Beams 22, 267.
MacFarlane, J., Golovkin, I., Wang, P., Woodruff, P. & Pereyra, N. (2007). SPECT3D – A multi-dimensional collional-radiative code for generating diagnostics signatures based on hydrodynamics and PIC simulation output. High Ener. Dens. Phys. 3, 181190.
McCall, G.H. (1983). Laser-driven implosion experiments. Plasma Phys. 25, 237.
Renner, O., Sauvan, P., Dalimier, E., Riconda, C., Rosmej, F.B., Weber, S., Nicolai, P., Peyrusse, O., Uschmann, I., Höfer, S., Kämpfer, T., Lötzsch, R., Zastrau, U., Förster, E. & Oks, E. (2008). X-ray spectroscopy of hot dense plasmas: experimental limits, line shifts & field effects. AIP Conf. Proc. 1058, 341348.
Renner, O., Sondhauss, P., Peyrusse, O., Krouský, E., Ramis, R., Eidmann, K. & Förster, E. (1999). High-resolution measurements of X-ray emission from dense quasi-1D plasma: Line merging and profile modification. Laser Part. Beams 17, 365375.
Renner, O., Uschmannand, I. & Förster, E. (2004). Diagnostic potential of advanced X-ray spectroscopy for investigation of hot dense plasmas. Laser Part. Beams 22, 2528.
Ribeyre, X., Nikolai, Ph., Schurtz, G., Olazabal-Loume, M., Breil, J., Maire, J.L., Feugeas, M.H., Hallo, L. & Tikhonchuk, V.T. (2008). Compression phase study of the HiPER baseline target. Plasma Phys. Control. Fusion 50, 025007.
Scherbakov, V.A. (1983). On the expediency of making double-pulse lasers for laser thermonuclear fusion. Sov. J. Plasma Phys. 9, 240.
Laboratory for Laser Energetics. (2012). Shock ignition experiments with planar targets on Omega. (2012). LLE Rev. 131, 137142.
Šmíd, M., Antonelli, L. & Renner, O. (2013). X-ray spectroscopic characterization of shock-ignition-relevant plasmas. Acta Polytechnica 53, 233236.
Tan, T.H., McCall, G.H., Kopp, R., Ganley, T. & van Hulsteyn, D. (1983). CO2 laser-driven high-density implosion experiments. Phys. Fluids 24, 754.
Theobald, W., Betti, R., Stoeckl, C., et al. (2008). Initial experiments on the shock-ignition inertial confinement fusion concept. Phys. Plasmas 15, 056306.
Theobald, W., Nora, R., Lafon, M., et al. (2012). Spherical shock-ignition experiments with the 40 + 20 –beam configuration on OMEGA. Phys. Plasmas 19, 102706.
Volosevich, P.P. & Rozanov, V.B. (1981). Conversion of laser radiation into fast electrons in the LTF problem. JETP Lett. 33, 1720.
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.
Zel'dovich, Ya. B. & Raizer, Yu. P. (2002). Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Mineola: Dover.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed