Skip to main content Accessibility help

Laser produced thin metallic planar mini-flyer generation using fiber optic plate

  • Mayank Shukla (a1), Sachin Sawant (a1), Ashish Agrawal (a1), Yogesh Kashyap (a1), Tushar Roy (a1) and Amar Sinha (a1)...


Laser produced planar mini flyer generation has widely gained importance owing to its wide ranging applications in the field of condensed matter, astrophysics, material research, shock phenomenon, etc. Flattop smooth laser beam profile as driver is the primary requirement for planar flyer generation besides special multilayered target geometry. We present here laser produced thin metallic planar mini-flyer generation using a fiber optic plate (FOP) of 8 mm thickness and about 6 µm fiber dimension. This technique is unique in the sense that it doesn't require large length as compared to optical fiber. A Gaussian shape laser beam from a laser oscillator was allowed to fall on the FOP generating a speckle pattern. This pattern was relayed and amplified using lenses and laser amplifiers to achieve energy of about 400 mJ. The beam was focused on a substrate (fused silica) based multilayered target on which flyer disks of different materials such as Al. Cu, Br, and Ta were attached. Velocities as high as 400 m/s was measured for Al flyer of 1.5 mm diameter and thickness 50 µm. Flyer disks were completely recovered after the laser shot. We also present a theoretical analysis along with experimental results of the laser beam smoothing technique using a He-Ne laser and FOP. Each channel of the FOP acts as a small single mode optical fiber. The basic idea was to divide the incoming coherent beam into many beam-lets introducing random distribution in length or/and diameter of optical fibers of FOP. The individual FOP channel acts as a diverging source because of single mode fiber with natural divergence λ/d. However, due to the small randomness in length or diameter, the individual diffraction sources are not in phase. This results in the generation of speckles in both near (Fresnel) and far field (Fraunhoffer) destroys the spatial coherence of the beam.


Corresponding author

Address correspondence and reprint requests to: Mayank Shukla, Neutron and X-ray Physics Facilities, Bhabha Atomic Research Centre, Mumbai 400085, India. E-mail:


Hide All
Asay, J.R., Trucano, T.G. & Hawke, R.S. (1990). Production efficiency of thin metal flyers formed by laser ablation. Int. J. Impact Eng. 10, 5156.
Batani, D., Bleu, C. & Löwer, Th. (2002). Design, simulation and application of phase plates. Eur. Phys. J. D 19, 231243.
Benuzzi, A., Koenig, M., Faral, B., Krishnan, J., Pisani, F., Batani, D., Bossi, S., Beretta, D., Hall, T., Ellwi, S., Hüller, S., Honrubia, J. & Grandjouan, N. (1998). Preheating study by reflectivity measurements in laser-driven shocks. Phys. Plasmas 5, 24102420.
Bourne, N.K. (2001). On the laser ignition and initiation of explosives. Proc. R. Soc. (London) 457, 14011426.
Braga, R.A., Nobre, C.M.B., Costa, A.G., Safadi, T. & Costa Da, F.M. (2011). Evaluation of activity through dynamic laser speckle using the absolute value of the differences. Opt. Commun. 284, 646650.
Burr, G. (1967). US Patent 3, 340, 807.
Bushman, A.V., Kanel, G.I., Ni, A.L. & Fortov, V.E. (1993). Intense Dynamic Loading of Condensed Matter. London: Taylor and Francis.
Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kikenny, J.D. & Lee, R.W. (1993). Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils. Phys. Rev. Lett. 70, 21022106.
Chiang, F.P. & Kin, C.C. (1982). Strain determination on curved surface using far field objective laser speckels. Opt. Eng. 21, 441446.
Decoste, R.S., Bodner, E., Ripin, B.H., Mclean, E.A., Obenschain, S.P. & Armstrong, C.M. (1979). Ablative acceleration of laser irradiated thin foils. Phys. Rev. Lett. 42, 1673.
Deng, X., Liang, X., Chen, Z., Yu, W. & Ma, R. (1986). Uniform illumination of large targets using lens array. Appl. Opt., 25, 377381.
Dixit, S.N., Thomas, I.M., Rushford, M.R. & Merril, R., et al. (1994). Kinoform Phase Plates for Tailoring Focal Plane Intensity Profiles. ICF Annual Report. Livermore: Lawrence Livermore National Laboratory. UCRL-LR-105820–94, 152–159.
Garnier, J. & Videau, L. (1997). Statistical analysis of the sizes and velocities of laser hot spots of smoothed beams. Phys. Plasma 8, 49144924.
Greenway, M.W., Proud, W.G., Field, J.E. & Goveas, S.G. (2003). A laser accelerated flyer system. Int. J. Impact. Eng. 29, 317321.
Honrubia, J.J., Dezulian, R., Batani, D., Bossi, S., Koenig, M., Benuzzi, A. & Grandjouan, N. (1998). Simulation of preheating effects in shock wave experiments. Laser Part. Beams 16, 1320.
Kato, Y., Mima, K., Miyanaga, M., Arinaga, S., Kitagawa, Y., Nakatsuka, M. & Yamanaka, C. (1984). Random phasing of high power lasers for uniform acceleration and plasma instability suppression. Phys. Rev. Lett. 53, 10571065.
Kawana, A., Kawachi, M., Miyashita, T., Saruwatari, M., Asatani, K., Yamada, J. & Oe, K. (1978). Pulse broadening in long-span single-mode fibers around a material-dispersion-free wavelength. Opt. Lett. 2, 106108.
O'Keefe, J.D. & Skeen, C.H. (1972). Laser induced stress simulation and impulse augmentation. Appl. Phys. Lett. 21, 464466.
Koenig, M., Faral, B., Boudenne, J.M., Batani, D., Benuzzi, A. & Bossi, S. (1994). Optical smoothing techniques for shock wave generation in laser produced plasmas. Phys. Rev. E 50, R3314.
Krehl, P., Schwirzke, F. & Cooper, A.W. (1975). Correlation of stress-wave profiles and the dynamics of the plasma produced by laser irradiation of plane solid targets. J. Appl. Phys. 46, 4400.
Labaste, J.L., Doucet, M. & Joubert, P. (1995). Shock Compression of Condensed Matter (Schmidt, S.C. and Tao, W.C., Eds.). New York: AIP, 12131215.
Lehmberg, R.H. & Obenschain, S.P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun. 46, 2731.
Ling, S., Zhao, J. & Pon, S. (1986). Ordinary illuminating light speckle using optical fiber for surface deformation measurement. Proc. SPIE, 599, 395398.
Lu, J. & Zou, G.P. (2010). Investigation on metal stress corrosion monitoring by laser speckle interferometry device. Proc. SPIE, 7656, 765666.
Miller, W.C., Kishimura, H., Kelly, C.S. & Thadhani, N. (2009). Laser driven miniflyer system for shock compression studies. In Shock Compression of Condensed Matter. College Park, MD: American Institute of Physics, pp. 11471150.
Nakatsuka, H. & Grischkowsky, D. (1981). Recompression of optical pulses broadened by passage through optical fibers. Opt. Lett. 6, 1315.
Neff, S., Ford, J., Wright, S., Martinez, D., Plechaty, C., Presura & R. (2009). Magnetically accelerated foils for shock wave experiments. Astrophys. Space Sci. 322, 189193.
Nobre, C.M.B., Braga, R.A. Jr., Costa, A.G., Cardoso, R.R., Dasilva, W.S. & Sáfadi, T. (2009). Biospeckle laser spectral analysis under Inertia Moment, Entropy and Cross-Spectrum methods. Opt. Commun. 282, 22362242.
Okada, K., Wakabayashi, K., Takenaka, H., Nagao, H., Kondo, K., Ono, T., Takamatsu, K., Ozaki, N., Nagai, K., Nakai, M., Tanaka, K. & Yoshida, M. (2003). Experimental technique for launching miniature flying plates using laser pulses. Int. J. Impact Eng. 29, 497502.
Paisley, D.L. (1991). Laser driven flyer plate. US Patent No. 5046423.
Paisley, D.L., Warnes, R.H. & Kopp, R.A. (1991). Laser driven flat plate impacts to 100 GPA with sub-nanosecond pulse duration and resolution for material property studies. Proc. of the APS tropical conference on Shock Compression of Condensed Matter. Williamberg: North Holland.
Paisley, D.L., Swift, D.C., Johnson, R.P., Kopp, R.A. & Kyrala, G.A. (2001). Laser-launched flyer plates and direct laser shocks for dynamic material property measurements. In Shock Compression of Condensed Matter. College Park, MD: American Institute of Physics, 13431346.
Ripin, B.H., Decoste, R., Obenschain, S.P., Bodner, S.E., Mclean, E.A., Young, F.C., Whitlock, R.R., Armstrong, C., Grun, M., Stamper, J.A., Gold, S.H., Nagel, D.J., Lehmberg, R.H. & Mcmohan, J.M. (1980). Laser Plasma interaction and ablative acceleration of thin foils at 1012–1013 Watts/cm2 Phys. Fluids 23, 10121030.
Robbins, D.L. & Sheffield, S.A. (2000). Miniflyer experiments: spall measurements on uranium. Los Alamos National Laboratory Report, LA-UR-00–0962.
Roybal, R., Stein, C., Miglionico, C. & Shively, J. (1995). Laboratory simulations of hyper velocity debris, Int. J. Impact Eng. 17, 707718.
Sckupsky, S., Short, R.W., Kessler, T., Craxton, R.S., Letzring, S. & Soures, J.M. (1989). Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys. 66, 3456.
Semenov, D.V., Sidorov, I.S., Nippolainen, E. & Kamshilin, A.A. (2010). Speckle-based sensor system for real-time distance and thickness monitoring of fast moving objects Meas. Sci. Technol. 21, 045304/1–4.
Setchell, R.E., Trott, W.M., FarnsworthJr., A.V. Jr., A.V., Casteneda, J.N. & Berry, D.M. (2002). Microscale shock wave physics using photonic driver techniques. Sandia Report SAND2002–0005, 1–78.
Stevenson, R.M., Norman, M.J., Bett, T.H., Pepler, D.A., Danson, C.N. & Ross, I.N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett. 19, 363365.
Swift, D.C. (2002). Accuracy of the laser-launched flyer technique for measuring equations of state. Los Alamos National Laboratory Report, LA-UR-03–4150, 1–10.
Swift, D.C., Niemczura, J.C., Paisley, D.L., Johnson, R.P., Luo, S. & Tierney, T.E. (2005). Laser-launched flyer plates for shock physics experiments. Rev. Sci. Instr. 76, 093907/1–9.
Swift, D.C., Charles, A.F., Clark, A.D., Buttler, T.W., Lyon, M.M. & Rightley, P. (2007). On high explosive launching of projectiles for shock physics experiments. Rev. Sci. Instr. 78, 063904/1–9.
Tanaka, K.A., Hara, M., Ozaki, N., Sasatani, Y., Kondo, K., Nakano, M., Nishihara, K., Takenaka, H., Yoshida, M. & Mima, K. (2000). Multi-layered flyer accelerated by laser induced shock waves. Phys. Plasma 7, 676680.
Wang, J. (2002). Thin-film adhesion measurement by laser-induced stress waves. PhD Thesis. Chicago: University of Illinois.
Watson, S., Gifford, M.J. & Field, J.E. (2000). Integrity of thin, laser-driven flyer plates, J. Appl. Phys. 88, 38593864.
Veron, D., Ayral, H., Gouedard, C., Husson, D., Lauriou, J., Martin, O., Meyer, B., Rostaing, M. & Sauteret, C. (1988). Optical spatial smoothing of Nd-glass laser beam. Opt. Commun. 65, 4246.


Laser produced thin metallic planar mini-flyer generation using fiber optic plate

  • Mayank Shukla (a1), Sachin Sawant (a1), Ashish Agrawal (a1), Yogesh Kashyap (a1), Tushar Roy (a1) and Amar Sinha (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed