Skip to main content Accessibility help

Laser accelerated ions and electron transport in ultra-intense laser matter interaction

  • M. ROTH (a1), E. BRAMBRINK (a1), P. AUDEBERT (a2), A. BLAZEVIC (a1), R. CLARKE (a3), J. COBBLE (a4), T.E. COWAN (a5), J. FERNANDEZ (a4), J. FUCHS (a2) (a5), M. GEISSEL (a1) (a6), D. HABS (a7), M. HEGELICH (a4), S. KARSCH (a3), K. LEDINGHAM (a8), D. NEELY (a3), H. RUHL (a5), T. SCHLEGEL (a9) and J. SCHREIBER (a7)...


Since their discovery, laser accelerated ion beams have been the subject of great interest. The ion beam peak power and beam emittance is unmatched by any conventionally accelerated ion beam. Due to the unique quality, a wealth of applications has been proposed, and the first experiments confirmed their prospects. Laser ion acceleration is strongly linked to the generation and transport of hot electrons by the interaction of ultra-intense laser light with matter. Comparing ion acceleration experiments at laser systems with different beam parameters and using targets of varying thickness, material and temperature, some insight on the underlying physics can be obtained. The paper will present experimental results obtained at different laser systems, first beam quality measurement on laser accelerated heavy ions, and ion beam source size measurements at different laser parameters. Using structured targets, we compare information obtained from micro patterned ion beams about the accelerating electron sheath, and the influence of magnetic fields on the electron transport inside conducting targets.


Corresponding author

Address correspondence and reprint requests to: M. Roth, Gesellschaft für Schwerionenforschung (GSI), University of Technology, Darmstadt, Germany. E-mail:


Hide All


Bell, A.R., Davies, J.R., Guerin, S. & Ruhl, H. (1997). Fast-electron transport in high-intensity short-pulse laser-solid experiments. Plasma Phys. Cont. Fus. 39, 653.
Boody, F.P., Hoepfl, R., Hora, H. & Kelly, J.C. (1996). Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams 14, 443448.
Borghesi, M., Campbell, D.H., Schiavi, A., Willi, O., MacKinnon, A.J., Hicks, D., Patel, P., Gizzi, L.A., Galimberti, M. & Clarke, R.J. (2002). Laser-produced protons and their application as a particle probe. Laser Part. Beams 20, 269275.
Clark, E.L., Krushelnick, K., Zepf, M., Beg, F.N., Tatarakis, M., Machacek, A., Santala, M.I.K., Watts, I., Norreys, P.A. & Dangor, A.E. (2000). Energetic heavy-ion and proton generation from ultraintense laser-plasma interaction with solids. Phys. Rev. Lett. 85, 16541657.
Cowan, T.E., Fuchs, J., Ruhl, H., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernandez, J., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pepin, H. & Renard-LeGalloudec, N. (2004). Ultralow emittance, multi-mev proton bemas from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92, 204801.
Deutsch, C. (2004). Penetration of intense charged particle beams in the outer layers of precompressed thermonuclear fuel. Laser Part. Beams 22, 115120.
Fuchs, J., Cowan, T.E., Audebert, P., Ruhl, H., Gremillet, L., Kemp, A., Allen, M., Blazevic, A., Gauthier, J.-C., Geissel, M., Hegelich, M., Karsch, S., Parks, P., Roth, M., Sentoku, Y., Stephens, R. & Campbell, E.M. (2003). Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators. Phys. Rev. Lett. 91, 255002.
Haseroth, H. & Hill, C.E. (1996). Multicharged ion sources for pulsed accelerators. Rev. Sci. Instr. 67, 945949.
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.-C., Geissel, M., Audebert, P., Cowan, T.E. & Roth, M. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002.
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Varentsov, D., Udrea, S., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intense heavy ion and laser beams. Laser Part. Beams 23, 4753.
Honrubia, J.J., Antonicci, A. & Moreno, D. (2004). Hybrid simulations of fast electron transport in conducting media. Laser Part. Beams 22, 129135.
Key, M.H., Cable, M.D., Cowan, T.E., Estabrook, K.G., Hammel, B.A., Hatchett, S.P., Henry, E.A., Hinkel, D.E., Kilkenny, J.D., Koch, J.A., Kruer, W.L., Langdon, A.B., Lasinski, B.F., Lee, R.W., MacGowan, B.J., MacKinnon, A., Moody, J.D., Moran, M.J., Offenberger, A.A., Pennington, D.M., Perry, M.D., Phillips, T.J., Sangster, T.C., Singh, M.S., Stoyer, M.A., Tabak, M., Thietbohl, G.L., Tsukamoto, M., Wharton, K. & Wilks, S.C. (1998). Hot electron production and heating by hot electrons in fast ignitor research. Phys. Plasmas 5, 19661972.
Martinolli, E., Batani, D., Perelli-Cippo, E., Scianitti, F., Koenig, M., Santos, J.J, Amiranoff, F., Baton, S.D., Hall, T., Key, M., MacKinnon, A., Snavely, R., Freeman, R., Andersen, C., King, J., Stephens, R., Rabec-Le-Gloahec, M.R., Rousseaux, C. & Cowan, T.E. (2002). Fast electron transport and heating in solid density matter. Laser Part. Beams 20, 171175.
Perry, M.D. & Mourou, G. (1994). Terawatt to petawatt subpicosecond lasers. Science 64, 917924.
Pisani, F., Bernadinello, A., Batani, D., Antonicci, A., Martinolli, E., Koenig, M., Gremillet, L., Amiranoff, F., Baton, S., Davies, J., Hall, T., Scott, D., Norreys, P., Djaoui, A., Rousseaux, C., Fews, P., Bandulet, H. & Pepin, H. (2000). Experimental evidence of electric inhibition in fast electron transport and of electric-field-limited fast electron transport in dense matter. Phys. Rev. E 62, R5927R5930.
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast ignition by intense laser accelerated proton beams. Phys. Rev. Lett. 86, 436439.
Roth, M., Blazevic, A., Geissel, M., Schlegel, T., Cowan, T.E., Allen, M., Audebert, P., Fuchs, J., Gauthier, J.-C., Meyer-ter-Vehn, J., Hegelich, M., Karsch, S. & Pukhov, A. (2002). Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. ST-AB. 5, 061301.
Ruhl, H., Cowan, T.E. & Fuchs, J. (2004). The generation of micro-fiducials in laser-accelerated proton flows, their imaging property of surface structures and application for the characterization of the flow. Phys. Plasmas 11, L17.
Santala, M.I.K., Zepf, M., Beg, F.N., Clark, E.L., Dangor, A.E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K.W.D., McCanny, T., Spencer, I., Machacek, A.C., Allott, R., Clarke, R.J. & Norreys, P.A. (2001). Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78, 1921.
Snavely, R.A., Key, M.H., Hatchett, S.P., Cowan, T.E., Roth, M., Phillips, T.W., Stoyer, M.A., Henry, E.A., Sangster, T.C., Singh, M.S., Wilks, S.C., MacKinnon, A., Offenberger, A., Pennington, D.M., Yasuike, K., Langdon, A.B., Lasinski, B.F., Johnson, J., Perry, M.D. & Campbell, E.M. (2000). Intense high-energy proton beams from petawatt-laser irradiation of solids. Phys. Rev. Lett. 85, 29452948.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, M.E., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultra powerful lasers. Phys. Plasmas 1, 16261634.
Wharton, K.B., Hatchett, S.P., Wilks, S.C., Key, M.H., Moody, J.D., Yanovsky, V., Offenberger, A.A., Hammel, B.A., Perry, M.D. & Joshi, C. (1998). Experimental measurements of hot electrons generated by ultraintense (>1019 W/cm2) laser-plasma interactions an solid-density targets. Phys. Rev. Lett. 81, 822825.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed