Skip to main content Accessibility help

Irradiation asymmetry effects on the direct drive targets compression for the megajoule laser facility

  • N.N. Demchenko (a1), I.YA. Doskoch (a1), S.YU. Gus'kov (a1), P.A. Kuchugov (a1) (a2), V.B. Rozanov (a1), R.V. Stepanov (a1), G.A. Vergunova (a1), R.A. Yakhin (a1) and N.V. Zmitrenko (a2)...


In the previous works (Rozanov et al., 2013; 2015) we have performed one-dimensional (1D) numerical simulations of the target compression and burning at the absorbed energy of ~1.5 MJ. As a result, the target was chosen to have a low initial aspect ratio in order to be less sensitive to the influence of such parameters as laser pulse duration, total laser energy, and equations of state model. The simulation results demonstrated a higher probability of ignition and effective burning of such a system. In the present work we discuss the impact of irradiation asymmetry on this baseline target implosion. The details of the 1D compression and a possible influence of 2D and 3D effects due to the hydrodynamic instability and mixing have been described. In accordance with the 2D calculations the target is still ignited, however, the symmetry analysis of 3D ones gives reasons to further reduce the efficiency of conversion of kinetic energy into potential energy.


Corresponding author

Address correspondence and reprint requests to: Pavel A. Kuchugov, Russian Federation, Miusskaya Sq. 4, 125047 Moscow, Russia. E-mail:


Hide All
Afanas'ev, Yu.V., Gamalii, E.G., Demchenko, N.N. & Rozanov, V.B. (1982). The absorption of the laser radiation by the spherical target, taking into account refraction and hydrodynamics. M.:Nauka, Trudy Fizicheskogo Instituta im. P.N. Lebedeva 134, 3241.
Basov, N.G., Volosevich, P.P., Gamalii, E.G., Zakharenkov, Yu.A., Kiselev, A.E., Kurdyumov, S.P., Levanov, E.I., Rozanov, V.B., Rupasov, A.A., Samarskii, A.A., Sklizkov, G.V., Sotskii, E.N. & Shikanov, A.S. (1988). The Thermal Conductivity of the Laser Crown Created by Laser. Preprint No. 188. Moscow, Russia: Lebedev Physical Institute.
Besnard, D. (2008). Fusion with the Megajoule laser. J. Phys. Conf. Ser. 112, 012004.
Boehly, T.R., Brown, D.L., Craxton, R.S., Keck, R.L., Knauer, J.P., Kelly, J.H., Kessler, T.J., Kumpan, S.A., Bucks, S.J., Letzring, S.A., Marshall, F.J., McCrory, R.L., Morse, S.F.B., Seka, W., Sowes, J.M. & Verdon, C.P. (1997). Initial performance results of the OMEGA laser system. Opt. Commun. 133, 495506.
Brandon, V., Canaud, B., Primout, M., Laffite, S. & Temporal, M. (2013). Marginally igniting direct-drive target designs for the laser megajoule. Laser Part. Beams 31, 141148.
Brandon, V., Canaud, B., Temporal, M. & Ramis, R. (2014). Low initial aspect-ratio direct-drive target designs for shock- and self-ignition in the context of the laser Megajoule. Nucl. Fusion 54, 083016.
Clark, D.S., Hinkel, D.E., Eder, D.C., Jones, O.S., Haan, S.W., Hammel, B.A., Marinak, M.M., Milovich, J.L., Robey, H.F., Suter, L.J. & Town, R.P.J. (2013). Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facility. Phys. Plasmas 20, 056318.
Dolan, T.J. (1981). Fusion Research. Principles, Experiments and Technology. New York: Pergamon Press.
Dolgoleva, G.V. (2013). Numerical Solvation of Equations, Describing the Transfer of Heat by Electrons and Ions. Preprint No. 71. Moscoe, Russia: Keldysh Institute of Applied Mathematics.
Dolgoleva, G.V. & Zabrodina, E.A. (2014). Comparison of Two Models of Calculation of Thermonuclear Kinetics. Preprint No. 68. Moscow, Russia: Keldysh Institute of Applied Mathematics.
Ebrardt, J. & Chaput, J.M. (2008). LMJ Project status. J. Phys. Conf. Ser. 112, 032005.
Edwards, M.J., Lindl, J.D., Spears, B.K., Weber, S.V., Atherton, L.J., Bleuel, D.L., Bradley, D.K., Callahan, D.A., Cerjan, C.J., Clark, D., Collins, G.W., Fair, J.E., Fortner, R.J., Glenzer, S.H., Haan, S.W., Hammel, B.A., Hamza, A.V., Hatchett, S.P., Izumi, N., Jacoby, B., Jones, O.S., Koch, J.A., Kozioziemski, B.J., Landen, O.L., Lerche, R., MacGowan, B.J., MacKinnon, A.J., Mapoles, E.R., Marinak, M.M., Moran, M., Moses, E.I., Munro, D.H., Schneider, D.H., Sepke, S.M., Shaughnessy, D.A., Springer, P.T., Tommasini, R., Bernstein, L., Stoeffl, W., Betti, R., Boehly, T.R., Sangster, T.C., Glebov, V.Yu., McKenty, P.W., Regan, S.P., Edgell, D.H., Knauer, J.P., Stoeckl, C., Harding, D.R., Batha, S., Grim, G., Herrmann, H.W., Kyrala, G., Wilke, M., Wilson, D.C., Frenje, J., Petrasso, R., Moreno, K., Huang, H., Chen, K.C., Giraldez, E., Kilkenny, J.D., Mauldin, M., Hein, N., Hoppe, M., Nikroo, A. & Leeper, R.J. (2011). The experimental plan for cryogenic layered target implosions on the National Ignition Facility – The inertial confinement approach to fusion. Phys. Plasmas 18, 051003.
Edwards, M.J., Patel, P.K., Lindl, J.D., Atherton, L.J., Glenzer, S.H., Haan, S.W., Kilkenny, J.D., Landen, O.L., Moses, E.I., Nikroo, A., Petrasso, R., Sangster, T.C., Springer, P.T., Batha, S., Benedetti, R., Bernstein, L., Betti, R., Bleuel, D.L., Boehly, T.R., Bradley, D.K., Caggiano, J.A., Callahan, D.A., Celliers, P.M., Cerjan, C.J., Chen, K.C., Clark, D.S., Collins, G.W., Dewald, E.L., Divol, L., Dixit, S., Doeppner, T., Edgell, D.H., Fair, J.E., Farrell, M., Fortner, R.J., Frenje, J., Gatu Johnson, M.G., Giraldez, E., Glebov, V.Yu., Grim, G., Hammel, B.A., Hamza, A.V., Harding, D.R., Hatchett, S.P., Hein, N., Herrmann, H.W., Hicks, D., Hinkel, D.E., Hoppe, M., Hsing, W.W., Izumi, N., Jacoby, B., Jones, O.S., Kalantar, D., Kauffman, R., Kline, J.L., Knauer, J.P., Koch, J.A., Kozioziemski, B.J., Kyrala, G., LaFortune, K.N., Le Pape, S., Leeper, R.J., Lerche, R., Ma, T., MacGowan, B.J., MacKinnon, A.J., Macphee, A., Mapoles, E.R., Marinak, M.M., Mauldin, M., McKenty, P.W., Meezan, M., Michel, P.A., Milovich, J., Moody, J.D., Moran, M., Munro, D.H., Olson, C.L., Opachich, K., Pak, A.E., Parham, T., Park, H.-S., Ralph, J.E., Regan, S.P., Remington, B., Rinderknecht, H., Robey, H.F., Rosen, M., Ross, S., Salmonson, J.D., Sater, J., Schneider, D.H., Seguin, F.H., Sepke, S.M., Shaughnessy, D.A., Smalyuk, V.A., Spears, B.K., Stoeckl, C., Stoeffl, W., Suter, L., Thomas, C.A., Tommasini, R., Town, R.P., Weber, S.V., Wegner, P.J., Widman, K., Wilke, M., Wilson, D.C., Yeamans, C.B. & Zylstra, A. (2013). Progress towards ignition on the National Ignition Facility. Phys. Plasmas 20, 07050.
Garanin, S.G., Bel'kov, S.A. & Bondarenko, S.V. (2012). Concept of construction a laser system UFL-2M. Book of Abstracts of Zvenigorod Int. Conf. on Plasma Physics and Controlled Fusion, 6–10 February, Zvenigorod, Russia, p. 17.
Gus'kov, S.Yu., Demchenko, N.N., Zhidkov, N.V., Zmitrenko, N.V., Litvin, D.N., Rozanov, V.B., Stepanov, R.V., Suslov, N.A. & Yakhin, R.A. (2010). Analysis of direct-drive capsule compression experiments on the Iskra-5 laser facility. J. Exp. Theor. Phys. 111, 466483.
Kalitkin, N.N. (1978). Numerical Methods. Moscow: Nauka, p. 512.
Kozlov, B.N. (1962). The rates of thermonuclear reactions. Atomnaya Energiya 12, 238.
Kuchugov, P., Zmitrenko, N., Rozanov, V., Yanilkin, Yu., Sin'kova, O., Statsenko, V. & Chernyshova, O. (2012). The evolution model of the Rayleigh-Taylor instability deveopmnent. J. Rus. Las. Res. 33, 517530.
Kuchugov, P.A. (2014). Dynamics of turbulent mixing processes in laser targets. PhD Thesis. Moscow, Russia: Keldysh Institute of Applied Mathematics.
Kuchugov, P.A., Shuvalov, N.D. & Kazenov, A.M. (2014). Simulation of the Gravitational Mixing on GPU. Bull. Peoples’ Friendship University of Russia, series Math., Inform., Phys. 2, 225229.
Landen, O.L. (2014). NIF laser-matter experiments: Status and prospects. Book of Abstracts of the 33rd European Conf. on Laser Interaction with Matter, 31 August–5 September 2014, Paris, France, p. 29.
Lebo, I.G. & Tishkin, V.F. (2006). The Study of Hydrodynamic Instability in Problems of Laser Fusion by Methods of Mathematical Modeling. Moscow: FIZMATLIT, p. 304.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933.
Miller, G.H., Moses, E.I. & Wuest, C.R. (2004). The National Ignition Facility. Opt. Eng. 43, 28412853.
Miquel, J.L. (2014). The laser Megajoule facility: Current status and program overview. Book of Abstracts of the 33rd European Conf. on Laser Interaction with Matter, August 31–September 5 2014, Paris, France, p. 25.
Moses, E.I., Boyd, R.N., Remington, B.A., Keane, C.J. & Al-Ayat, R. (2009). The National Ignition Facility: Ushering in a new age for high energy density science. Phys. Plasmas 16, 041006.
Rozanov, V.B., Gus'kov, S.Yu., Vergunova, G.A., Demchenko, N.N., Stepanov, R.V., Doskoch, I.Ya., Yakhin, R.A., Bel'kov, S.A., Bondarenko, S.V. & Zmitrenko, N.V. (2013). Direct Drive Targets for the Megajoule Installation UFL-2M. Book of Abstracts of the Int. Conf. of Inertial Fusion and Application Science, 8–13 September 2013, Nara, Japan, p. 236.
Rozanov, V.B., Gus'kov, S.Yu., Vergunova, G.A., Demchenko, N.N., Stepanov, R.V., Doskoch, I.Ya., Yakhin, R.A. & Zmitrenko, N.V. (2015). Direct Drive targets for the megajoule facility UFL-2M. J. Phys. Conf. Ser. 651, 012017.
Rozanov, V.B., Zmitrenko, N.V., Kuchugov, P.A., Stepanov, R.V., Statsenko, V.P., Yanilkin, Yu.V. & Yakhin, R.A. (2014). Hydrodynamic instabilities and mixing in the direct-drive laser targets for the megajoule scale facilities. Book od Abstracts of the 33rd European Conf. on Laser Interaction with Matter, 31 August–5 September 2014, p. 101.
Taylor, S. & Chittenden, J.P. (2014). Effects of perturbations and radial profiles on ignition of inertial confinement fusion hotspots. Phys. Plasmas 21, 062701.
Tishkin, V.F., Nikishin, V.V., Popov, I.V. & Favorskii, A.P. (1995). Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer–Meshkov instability. Matem. Mod. 7, 1525.
Volosevich, P.P., Gus'kov, S.Yu., Levanov, E.I., Rozanov, V.B. & Sirotenko, N.G. (1995). Mathematical Modeling of Laser Compression and Burning of Two-stage Thermonuclear Targets. Preprint No. 18. Moscow, Russia: Institute of Mathematical Modelling.
Volosevich, P.P., Kosyrev, V.I. & Levanov, E.I. (1978). On Account of the Restriction of Heat Flux in the Numerical Experiment. Preprint No. 21. Moscow, Russia: Institute of Applied Mathematics.
Zmitrenko, N.V., Karpov, V.Ya., Fadeev, A.P., Shelaputin, I.I. & Shpatakovskaya, G.V. (1983). Description of the physical processes in the DIANA program for calculations of problems of laser fusion. Voprosy Atomnoy Nauki i Tekhniki (VANT) Series Methods and Software for Numerical Solution of Problems of Mathematical Physics 2, 3437.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed