Skip to main content Accessibility help

Ion charge state and energy enhancement by axial magnetic field applied during laser produced plasma expansion

  • S.A. Abbasi (a1) (a2), A.H. Dogar (a3), B. Ilyas (a4), S. Ullah (a1), M. Rafique (a2) and A. Qayyum (a1)...


The effects of axial magnetic field on the properties of the ions ejected from Nd:YAG laser (wavelength = 1064 nm, pulse duration = 6 ns) produced expanding Cu plasma were investigated. A plane Cu target, without and with 0.23 T axial magnetic field at its surface, was irradiated in the fluence range of 2–24 J/cm2. The ions emitted along the target surface normal were analyzed with the help of ion collector and time-of-flight electrostatic ion energy analyzer. The integrated ion yield, highest ion charge state, average ion energy, and energy of individual ion charge states were found to increase by application of the magnetic field. The initial parameters of the non-equilibrium plasma such as average ion charge, equivalent potential, electron temperature, electron density, Debye length, and transient electric field were estimated from the experimental results obtained without and with application of the magnetic field. The increase of ion yield and ion charge state by application of magnetic field are most probably due to the trapping of electrons in front of the target surface, which boosts up the electron impact ionization process. The ion energy increment due to the magnetic field is discussed in the frame work of electrostatic model for ion acceleration in laser plasma.


Corresponding author

Address correspondence and reprint requests to: A. Qayyum, Physics Division, Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad, Pakistan. E-mail:


Hide All
Abbasi, S.A., Hussain, M.S., Ilyas, B., Rafique, M., Dogar, A.H. & Qayyum, A. (2015). Characterization of highly charged titanium ions produced by nanosecond pulsed laser. Laser Part. Beams 33, 8186.
Alekseev, N.N., Balabaev, A.N., Vasilyev, A.A., Satov, Y.A., Savin, S.M., Sharkov, B.Y., Shumshurov, A.V. & Roerich, V.C. (2012). Development of laser-plasma generator for injector of C4+ ions. Laser Part. Beams 30, 6573.
Baraldi, G., Perea, A. & Afonso, C.N. (2011). Dynamics of ions produced by laser ablation of several metals at 193 nm. J. Appl. Phys. 109, 043302043307.
Braren, B., Bukoski, J. & Norton, D. (1993). Laser Ablation in Material Processing and Applications. Pittsburgh: Material Research Society.
Burdt, R.A., Tao, Y., Tillack, M.S., Yuspeh, S., Shaikh, N.M., Flaxer, E., Najmabadi, F. (2010). Laser wavelength effects on the charge state resolved ion energy distributions from laser-produced Sn plasma. J. Appl. Phys. 107, 043303043308.
Caridi, F., Torrisi, L. & Cutroneo, M. (2013). Ionic and atomic characterization of laser-generatd plasmas at 5 × 109 W/cm2 pulse intensity. Appl. Sur. Sci. 272, 612.
Caridi, F., Torrisi, L. & Giuffrida, L. (2010). Time-of-flight and UV spectroscopy characterization of laser-generated plasma. Nucl. Inst. Meth. B 268, 499505.
Demtröder, W. & Jantz, W. (1970). Investigation of laser-produced plasmas from metal-surfaces. Plasma Phys. 12, 691703.
Doggett, B. & Lunny, J.G. (2009). Langmuir probe characterization of laser ablated plasmas. J. Appl. Phys. 105, 033306.
Harilal, S.S., Bindhu, C.V., Issac, R.C., Nampoori, V.P.N. & Vallabhan, C.P.G. (1997). Electron density and temperature measurements in a laser produced carbon plasma. J. Appl. Phys. 82, 21402146.
Harilal, S.S., Tillack, M.S., O'Shay, B., Bindhu, C.V. & Najmabadi, F. (2004). Confinment and dynamics of laser-produced plasma expanding across a transverse magnetic field. Phys. Rev. E. 69, 026413.
Harilal, S.S., Tillack, M.S., Tao, Y., O'Shay, B., Paguio, R. & Nikroo, A. (2006). Extreme-ultraviolet spectral purity and magnetic ion debries mitigation by use of low-density tin targats. Opt. lett. 31, 15491551.
Hofer, R., Hass, J. & Gallimore, A. (1999). Development of a 45-degree parallel-plate electrostatic energy analyzer for hall thruster plume studies: preliminary data. Proc. 26th Int. Conf. on Electric Propulsion, October 17–21 Kitakyushu, Japan, 99–113.
Ikeda, S., Takahashi, K., Okamura, M. & Horioka, K. (2016). Behavior of moving plasma in solenoidal magnetic field in a laser ion source. Rev. Sci. Instum. 87, 02A912.
Ilyas, B., Dogar, A.H. & Qayyum, A. (2013). The effect of laser irradiance on the charge loss in expanding tungsten plasma. Nucl. Inst. Meth. B 312, 122125.
Ilyas, B., Dogar, A.H., Ullah, S., Mahmood, N. & Qayyum, A. (2012). Multiply charged ion emission from laser produced tungsten plasma. Laser Part. Beams 30, 651657.
Ilyas, B., Dogar, A.H., Ullah, S. & Qayyum, A. (2011). Laser fluence effects on ion emission from a laser-generated Cu plasma. J. Phys. D: Appl. Phys. 44, 295202295208.
Kashiwagi, H., Hattori, T., Hayashizaki, N., Yamamato, K., Takahashi, Y. & Hata, T. (2004). Nd-Yag laser ion source for direct injection scheme. Rev. Sci. Instum. 75, 15691571.
Kelly, R. (1992). Gas dynamics of the pulsed emission of a perfect gas with applications to laser sputtering and to nozzle expansion. Phys. Rev. A 46, 860874.
Kondo, K., Kanesue, T., Tamura, J., Dabrowski, R. & Okamura, M. (2010). Laser plasma in a magnetic field. Rev. Sci. Instum. 81, 02B716.
Lindl, J. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.
Margarone, D. (2007). Ion acceleration and diagnostics in laser-generated plasmas. PhD Thesis. Italy: Università degli Studi di Messina.
McWhirter, R.W.P. (1965). Spectral Intensities. In Plasma diagnostic techniques (Huddlestone, R.H. and Leonard, S.L., Eds.), pp. 201264. New York: Academic Press, 1995 (chapter 5).
Pagano, C., Hafeez, S. & Lunney, J.G. (2009). Influence of transverse magnetic field on expansion and spectral emission of laser5 produced plasma. J. Phys. D: Appl. Phys. 42, 155205.
Pant, H.C. (1994). Laboratory simulation of space and astrophysical plasmas using intense lasers. Phys. Scr. T50, 109113.
Puell, H. (1970). Heating of laser produced plasma generated at plane solid target. Z. Naturforsch. B 25a, 18071815.
Qayyum, A. & Ahmad, S. (1994). A magnetically confined hollow cathode duoplasmatron for the PINSTECH ion implanter. Nucl. Inst. Meth. B 94, 597600.
Qingrun, H. & Gao, J. (1997). Pulsed laser deposition of diamond-like carbon film under a magnetic field. J. Phys. Condens. Matter 9, 1033310337.
Roy, A., Harilal, S.S., Hassan, S.M., Endo, A., Mocek, T. & Hassanein, A. (2015). Collimation of laser-produced plasma using axial magnetic field. Laser Part. Beams 33, 175182.
Roy, A., Hassan, S.M., Harilal, S.S., Endo, A., Mocek, T. & Hassanein, A. (2014). Extreme ultraviolet emission and confinement of tin plasmas in the presence of amagnetic field. Phys. Plasmas 21, 053106053111.
Sharkov, B.Y. & Scrivens, R. (2005). Laser ion sources. IEEE Trans. Plasma Phys. 33, 17781785.
Shen, X.K., Lu, Y.F., Gebre, T., Ling, H. & Han, Y.X. (2006). Optical emission in magnetically confined laser-induced breakdown spectroscopy. J. Appl. Phys. 100, 053303053307.
Torrisi, L., Caridi, F., Margarone, D. & Borrielli, A. (2008 a). Characterization of laser-generated silicon plasma. Appl. Sur. Sci. 254, 20902095.
Torrisi, L., Caridi, F., Margarone, D. & Giuffrida, L. (2008 b). Nickel plasma produced by 532-nm and 1064-nm pulsed laser ablation. Plasma Phys. Rep. 34, 598606.
Torrisi, L., Margarone, D., Gammino, S. & Ando, L. (2007). Ion energy increase in laser-generated plasma expanding through axial magnetic field trap. Laser Part. Beams 25, 453464.
Tsui, Y.Y., Minami, H., Vick, D. & Fedosejevs, R. (2002). Debris reduction for copper and diamond-like carbon thin film produced by magnetically guided pulsed laser deposition. J. Vac. Sci. Technol. A 20, 744747.
Wolowski, J., Badziak, I., Ivanova-Stanik, I., Parys, P., Stepniewski, W. & Woryna, E. (2004). Magnetic field influence on laser-produced ion stream. Rev. Sci. Instrum. 75, 13531356.
Woryna, E., Parys, P., Wolowski, J. & Mroz, W. (1996). Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293331.
Yeates, P., Costello, J.T. & Kennedy, E.T. (2010). The DCU laser ion source. Rev. Sci. Instum. 81, 043305-1043305-10.
Zhao, H.Y., Zhang, J.J., Jin, Q.Y., Liu, W., Wang, G.C., Sun, L.T., Zhang, X.Z. & Zhao, H.W. (2016). New development of laser ion source for highly charged ion beam production at Institute of Modern Physics. Rev. Sci. Instrum. 87, 02A917.


Ion charge state and energy enhancement by axial magnetic field applied during laser produced plasma expansion

  • S.A. Abbasi (a1) (a2), A.H. Dogar (a3), B. Ilyas (a4), S. Ullah (a1), M. Rafique (a2) and A. Qayyum (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed