Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T14:00:11.412Z Has data issue: false hasContentIssue false

Ion acceleration by short high intensity laser pulse in small target sets

Published online by Cambridge University Press:  29 June 2009

A. Andreev*
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan SIC, Vavilov State Optical Institute, St. Petersburg, Russia
K. Platonov
Affiliation:
SIC, Vavilov State Optical Institute, St. Petersburg, Russia
S. Kawata
Affiliation:
Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
*
Address correspondence and reprint requests to: A. Andreev, Vavilov State Optical Institute, 12 Birzhevaya line, St. Petersburg, 199064, Russia. E-mail: andreev@mbi-berlin.de

Abstract

Ion acceleration by short, high intensity laser pulses in sets of small targets is treated by an analytical model developed here, and by two-dimensional particle-in-cell simulations. When an intense short laser pulse illuminates a thin foil target at normal incidence, electrons in the target are accelerated by the ponderomotive force. At the rear surface of the foil they generate a strong electric field that accelerates the ions, and generates an ion beam of small divergence. Using a mass-limited small target like a droplet enhances the ion energy, but increases divergence at the same time. In this paper, a combination of several-micron targets in a periodic structure (for example, a droplet chain) is proposed in order to increase the conversion efficiency from the incident laser beam to the emergent protons. Improvement of the energy flux conversion efficiency from the laser to the ion beam at optimal conditions is demonstrated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albright, B.J., Yin, L., Hegelich, B.M., Bowers, K.J., Kwan, T.J.T. & Fernandez, J.C. (2006). Theory of laser acceleration of light-ion beams from interaction of ultrahigh-intensity lasers with layered targets. Phys. Rev. Lett. 97, 115002115007.CrossRefGoogle ScholarPubMed
Andreev, A.A., Sonobe, R., Kawata, S., Miyazaki, S., Sakai, K., Miyauchi, K., Kikuchi, T., Platonov, K. & Nemoto, K. (2006). Effect of a laser pre-pulse on fast ion generation in the interaction of ultra-short intense laser pulse with a limited mass foil target. Plasma Phys. Contr. Fusion 48, 16051619.CrossRefGoogle Scholar
Bagchi, S., Kiran, P.P. & Bhuyan, M.K. (2008). Hotter electrons and ions from nano-structured surfaces. Laser Part. Beams 26, 259264.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161168.CrossRefGoogle Scholar
Brantov, A.V., Tikhonchuk, V.T., Klimo, O., Romanov, D., Ter-Avetisyan, S., Schnurer, M., Sokollik, T. & Nickles, P. (2006). Quasi-mono-energetic ion acceleration from a homogeneous composite targets by an intense laser pulse. Phys. Plasmas 13, 122705122715.CrossRefGoogle Scholar
Chen, Z.L., Unick, C., Vafaei-Najafabadi, N., Tsui, Y.Y., Fedosejevs, R., Naseri, N., Masson-Laborde, P.E. & Rozmus, W. (2008). Quasi-monoenergetic electron beams generated from 7 TW laser pulses in N-2 and He gas targets. Laser Part. Beams 26, 147155.CrossRefGoogle Scholar
Flippo, K., Hegelich, B.M., Albright, B.J., Yin, L., Gautier, D.C., Letzring, S., Schollmeier, M., Schreiber, J., Schulze, R. & Fernandez, J.C. (2007). Laser-driven ion accelerators: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.CrossRefGoogle Scholar
Fuchs, J., Antici, P., d'Humieres, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C., Kaluza, M., Malka, V., Manclossi, M., Meyeroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, P. (2005). Laser proton scaling lows and new paths towards energy increase. Nat. phys. doi:10.1038/nphys199.1-7Google Scholar
Kemp, A.J. & Ruhl, H. (2005). Multispecies ion acceleration of laser irradiated water droplets. Phys. Plasmas 12, 033105033115.CrossRefGoogle Scholar
Limpouch, J., Psikal, J., Andreev, A.A. & Platonov, K. (2008). Enhanced ion acceleration from mass limited targets. Laser Part. Beams 26, 110.CrossRefGoogle Scholar
McKenna, P., Carroll, D.C., Lundh, O., Nurnberg, F., Markey, K., Bandyopadhyay, S., Batani, D., Evans, R.G., Jafer, R., Kar, S., Neely, D., Pepler, D., Quinn, M.N., Redaelli, R., Roth, M., Wahlstrom, C.G., Yuan, X.H. & Zepf, M. (2008). Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets. Laser Part. Beams 26, 591597.CrossRefGoogle Scholar
Mourou, G., Tajima, T. & Bulanov, S. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Nickles, P.V., Ter-Avetisyan, S., Schnuerer, M., Sokollik, T., Andreev, A. & Sandner, W. (2007). Review of ultrafast ion acceleration experiments in laser plasma at Max Born Institute. Laser Part. Beams 25, 347363.CrossRefGoogle Scholar
Nodera, Y., Kawata, S., Onuma, N., Limpouch, J., Klimo, O. & Kikuchi, T. (2008). Improvement of energy conversion efficiency from laser to proton beam in a laser foil interaction. Phys. Rev. E 78, 046401046407.CrossRefGoogle Scholar
Psikal, J., Tikhonchuk, V.T., Limpouch, J., Andreev, A.A. & Brantov, A.V. (2008). Ion acceleration by femtosecond laser pulses in small multispecies targets. Phys. Plasmas 15 053102053110.CrossRefGoogle Scholar
Schnurer, M., Ter-Avetisyan, S., Busch, S., Risse, E., Kalachnikov, M.P., Sandner, W. & Nickles, P. (2005). Ion acceleration with ultrafast laser driven water droplets. Laser Part. Beams 23, 337343.CrossRefGoogle Scholar
Singh, K.P., Sajal, V. & Gupta, D.N. (2008). Quasi-monoenergetic GeV electrons from the interaction of two laser pulses with a gas. Laser Part. Beams 26, 597604.CrossRefGoogle Scholar
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R., Cristofari, G., Prete, E.D., Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-MeV per nucleon ions in the controlled amount of matter mode (CAM) by using causally isolated targets. Laser Part. Beams 25, 8591.CrossRefGoogle Scholar
Sumeruk, H., Kneip, S., Ditmier, T., Symes, D., Churina, I., Belolipetski, A., Donnelly, T. & Ditmire, T. (2007). Control of laser field coupling to electrons in solid targets with wavelength scale spheres. Phys. Rev. Lett. 98, 045001045005.CrossRefGoogle ScholarPubMed
Ter Avetisyan, S., Shnurer, M., Kalashnikov, M., Nickles, P., Risse, E., Sokollik, T., Sandner, W., Andreev, A. & Tikhonchuk, V. (2006). Quasimonoenergetic deutron bursts produced by ultraintense laser pulses. Phys. Rev. Lett. 96, 145006145011.CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S., Schnurer, M., Polster, R., Nickles, P.V. & Sandner, W. (2008 a). First demonstration of collimation and monochromatisation of a laser accelerated proton burst. Laser Part. Beams 26, 637642.CrossRefGoogle Scholar
Ter-Avetisyan, S., Shnurer, M., Nickles, P., Sokollik, T., Sandner, W., Andreev, A., Psikal, J. & Tikhonchuk, V. (2008 b). Laser proton acceleration in a water spray target. Phys. Plasmas 15, 083106083114.CrossRefGoogle Scholar
Tikhonchuk, V., Andreev, A., Bochkarev, S. & Bychenkov, V. (2005). Ion acceleration in short-laser-pulse interaction with solid foil. Plasma Phys. Contr. Fusion 47, B869B878.CrossRefGoogle Scholar
Zheng, J., Sheng, Z.M., Peng, X.Y. & Zhang, J. (2005). Energetic electrons and proton generated from the interaction of ultrashort laser pulses with microdroplet plasmas. Phys. Plasmas 12, 113105113115.CrossRefGoogle Scholar