Skip to main content Accessibility help
×
Home

Introducing a two temperature plasma ignition in inertial confined targets under the effect of relativistic shock waves: The case of DT and pB11

  • Shalom Eliezer (a1), Zohar Henis (a2) (a3), Noaz Nissim (a2), Shirly Vinikman Pinhasi (a4) and José Maria Martinez Val (a1)...

Abstract

A criterion for a two temperature plasma nuclear fusion ignition is derived by using a common model. In particular, deuterium-tritium (DT) and proton–boron11 (pB11) are considered for pre-compressed plasma. The ignition criterion is described by a surface in the three-dimensional space defined by the electron and ion temperatures Te, Ti, and the plasma density times the hot spot dimension, ρ·R. The appropriate fusion ion temperatures Ti are larger than 10 keV for DT and 150 keV for pB11. The required value of ρ·R for pB11 ignition is larger by a factor of 50 or more than for DT, depending on the electron temperature. Furthermore, our ignition criterion obtained here for pB11 fusion is practically impossible for equal electron and ion temperatures. In this paper it is suggested to use a two temperature laser induced shock wave in the intermediate domain between relativistic and non-relativistic shock waves. The laser parameters required for fast ignition are calculated. In particular, we find that for DT case one needs a 3 kJ/1 ps laser to ignite a pre-compressed target at about 600 g/cm3. For pB11 ignition it is necessary to use more than three orders of magnitude of laser energy for the same laser pulse duration.

Copyright

Corresponding author

Address correspondence and reprint requests to: Shalom Eliezer, Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid, Spain. E-mail: noaznissim@gmail.com

References

Hide All
Atzeni, S. & Meyer-Ter-Vehn, J. (2004). The Physics of Inertial Fusion. Oxford: Claredon Press.
Basov, N.G., Guskov, S.Y. & Feoktistov, L.P. (1992). Thermonuclear gain of ICF targets with direct heating of the ignitor. J. Soviet Laser Res. 13, 396399.
Betti, R., Zhou, C.D., Anderson, K.S., Perkins, L.J., Theobald, W. & Sokolov, A.A. (2007). Shock ignition of thermonuclear fuel with high areal density. Phys. Rev. Lett. 98, 155001/1–4.
Bosch, H.S. & Hale, G.M. (1992). Improved formulas for fusion cross-sections and thermal reactivities. Nucl. Fusion 32, 611631.
Cicchitelli, L., Hora, H. & Postle, R. (1990). Longitudinal field components of laser beams in vacuum. Phys. Rev. A 41, 37273732.
Chu, M.S. (1972). Thermonuclear reaction waves at high densities. Phys. Fluids 15, 413422.
Eliezer, S. (2002). The Interaction of High-Power Lasers with Plasmas. Boca Raton, Florida: CRC press.
Eliezer, S. (2012). Relativistic acceleration of micro-foils with prospects for fast ignition. Laser Part. Beams 30, 225232.
Eliezer, S. (2013). Shock waves and Equations of state related to laser–plasma interaction. In Laser–Plasma Interactions and Applications, 68th Scottish Universities Summer School in Physics, (McKenna, P., Neely, D., Bingham, R. and Jaroszynski, D.A., Eds.), Heidelberg: Springer Publication, pp. 4978.
Eliezer, S., Hora, H., Kolka, E., Green, F. & Szichman, H. (1995). How double layers accelerate charged particles. Laser Part. Beams 13, 441447.
Eliezer, S. & Martinez Val, J.M. (1998). Proton-boron 11 fusion reactions induced by heat-detonation burning waves. Laser Part. Beams 16, 581598.
Eliezer, S. & Martinez Val, J.M. (2011). The comeback of shock waves in inertial fusion energy. Laser Part. Beams 29, 175181.
Eliezer, S., Nissim, N., Pinhasi, V.S., Raicher, E. & Martinez Val, J.M. (2014a). Ultrafast ignition with relativistic shock waves induced by high power lasers. High Power Laser Sci. Eng. 2, 10. doi: 10.1017/hpl.2014.24
Eliezer, S., Nissim, N., Raicher, E. & Martinez Val, J.M. (2014b). Relativistic shock waves induced by ultra-high laser pressure. Laser Part. Beams 32, 243251.
Eliezer, S., Nissim, N., Martinez Val, J.M., Mima, K. & Hora, H. (2014c). Double layer acceleration by laser radiation. Laser Part. Beams 32, 211216.
Esirkepov, T., Borghesi, M., Bulanov, S.V., Mourou, G. & Tajima, T. (2004). Highly efficient relativistic ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003/1–4.
Fortov, V.E. & Lomonosov, I.V. (2010). Shock waves and equations of state of matter. Shock Waves 20, 5371.
Guskov, S.Y. (2013). Fast ignition of inertial confinement fusion targets. Plasma Phys. Rep. 39, 150.
Guskov, S.Y., Krokhin, O.N. & Rozanov, V.B. (1976). Similarity solution of thermonuclear burn wave with electron and α conductivities. Nucl. Fusion 16, 957962.
Guskov, S.Y. & Rozanov, V.B. (1993). Ignition and burn propagation in ICF targets. In Nuclear Fusion by Inertial Confinement: A comprehensive Treatise. (Velarde, G., Ronen, Y. & Martinez Val, J.M., Eds.), Baton Roca, Florida: CRC press, pp. 293320.
Hora, H. (1991). Plasmas of High Temperatures and Density. Heidelberg: Springer.
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers produced by nonlinear forces in laser produced plasmas. Phys. Rev Lett. 53, 16501653.
Hora, H., Lalousis, P., Giuffrida, L., Margarone, D., Korn, G., Eliezer, S., Miley, G., Moustaizis, S. & Mourou, G. (2015). Petawatt laser pulses for proton-boron high gain fusion with avalanche reactions excluding problems of nuclear radiation. Proc. SPIE 9515, 951518. doi: 10.1117/12.2181943.
Hora, H., Lalousis, P. & Moustaizis, S. (2014). Fiber ICAN laser with exawatt picosecond pulses for fusion without nuclear radiation problems. Laser Part. Beams 32, 6368.
Kouhi, M., Ghoraneviss, M., Malekynia, B., Hora, B., Miley, G.H., Sari, A.H., Azizi, N., & Razavipour, S.S. (2011). Resonance effect for strong increase of fusion gains at thermal compression for volume ignition of Hydrogen Boron-11. Laser Part. Beams 29, 125134.
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction. Laser Part. Beams 1, 283304.
Lalousis, P., Foldes, I.B. & Hora, H. (2012). Ultra-high acceleration of plasma by picosecond terawatt laser pulses for fast ignition of fusion. Laser Part. Beams 30, 233242.
Lalousis, P., Hora, H., Eliezer, S., Martinez Val, J.M., Moustaizis, S., Miley, G.H. & Mourou, G. (2013). Shock Mechanisms by ultra-high laser accelerated plasma blocks in solid density targets for fusion. Phys. Lett. A 377, 885.
Lalousis, P., Hora, H. & Moustaizis, S. (2014). Optimized boron fusion with magnetic trapping by laser driven plasma block initiation at nonlinear forced driven ultrahigh acceleration. Laser Part. Beams 32, 409411.
Landau, L.D. & Lifshitz, E.M. (1987). Fluid Mechanics, 2nd edn.Oxford: Pergamon Press.
Lindl, J.D. (1988). Physics of ignition for ICF capsules. In International School of Plasma Physics Piero Caldirola: Inertial Confinement Fusion. (Caruso, A. & Sindoni, E., Eds.), Bologna: Editrice Compositori, pp. 617.
Naumova, N., Schlegel, T., Tikhonchuk, V.T., Labaune, C., Sokolov, I.V. & Mourou, G. (2009). Hole boring in a DT pellet and fast ion ignition with ultra-intense laser pulses. Phys. Rev. Lett. 102, 025002/1–4.
Nevins, W.M. & Swain, C. (2000). The thermonuclear fusion coefficient for p-11B reactions. Nucl. Fusion 40, 865872.
Nuckolls, J.H., Wood, L., Thiessen, A. & Zimmermann, G.B. (1972). Laser compression of matter to super-high densities: Thermonuclear applications. Nature 239, 139142.
Rozanov, V.B., Verdon, C.P., Decroisette, M., Guskov, S.Y., Lindl, J.D., Nishihara, K. & Takabe, H. (1995). Inertial Confinement Target Physics. Energy from Inertial Fusion Vienna: International Atomic Energy Agency, pp. 2169.
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.S. (1994). Ignition and high gain with ultra-powerful lasers. Phys. Plasmas 1, 16261634.
Takabe, H., Mima, K. & Nakai, S. (1989). Requirement of uniformity for fuel ignition and uniformity in high neutron yield implosion. Laser Part. Beams 7, 175188.
Taub, A.H. (1948). Relativistic Rankine–Hugoniot equations. Phys. Rev. 74, 328334.
Velarde, G. & Carpintero-Santamaria, N. eds. (2007). Inertial Confinement Nuclear Fusion: A Historical Approach by its Pioneers. UK: Foxwell and Davies Pub.
Zeldovich, Y.B. & Raizer, Y.P. (1966). Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. New York: Academic Press Publications.

Keywords

Introducing a two temperature plasma ignition in inertial confined targets under the effect of relativistic shock waves: The case of DT and pB11

  • Shalom Eliezer (a1), Zohar Henis (a2) (a3), Noaz Nissim (a2), Shirly Vinikman Pinhasi (a4) and José Maria Martinez Val (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed