Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-21T14:45:18.921Z Has data issue: false hasContentIssue false

Influence of the initial size of the proton layer in sheath field proton acceleration

Published online by Cambridge University Press:  28 August 2013

Jinqing Yu
Affiliation:
Vacuum Electronics National Laboratory, University of Electronic Science and Technology of China, Chengdu, People's Republic of China Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, People's Republic of China The Blackett Laboratory, Imperial College, London, United Kingdom
Xiaolin Jin
Affiliation:
Vacuum Electronics National Laboratory, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
Weimin Zhou
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, People's Republic of China
Bo Zhang
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, People's Republic of China
Zongqing Zhao
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, People's Republic of China
Leifeng Cao
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, People's Republic of China
Bin Li*
Affiliation:
Vacuum Electronics National Laboratory, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
Yuqiu Gu
Affiliation:
Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, People's Republic of China Institute of Engineering Physics, College of Science National University of Defense Technology, Changsha, People's Republic of China
Rongxin Zhan
Affiliation:
School of Information Engineering, Zhengzhou University, Zhengzhou, People's Republic of China
Z. Najmudin
Affiliation:
The Blackett Laboratory, Imperial College, London, United Kingdom
*
Address correspondence and reprint requests to: Bin Li, Vacuum Electronics National Laboratory, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China. E-mail: libin@uestc.edu.cn

Abstract

We investigate the influence of the initial size of the proton layer on proton acceleration in the interaction of high intensity laser pulses with double-layer targets by using two-dimensional particle-in-cell code. We discuss the influence of proton layer initial sizes on the cut-off energy, energy spread, and divergence angle of proton beam. It is found that Coulomb explosion plays an important role on the proton cut-off energy. This causes the cut-off energy to increase for increasing proton layer thickness, at the expense of energy spread. The proton divergence angle reaches a peak value and then falls again with increasing the width. Proton divergence angle grows with target thickness. It is found that there is an optimal thickness to obtain the narrowest energy spread, which may provide an effective method (change the size of proton layer) to obtain high quality proton beams. This work may serve to improve the understanding of sheath field proton acceleration.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreev, A., Ceccotti, T., Levy, A., Platonov, K. & Martin, Ph. (2010). Divergence of fast ions generated by interaction of intense ultra-high contrast laser pulses with thin foils. New J. Phys. 12, 045007.CrossRefGoogle Scholar
Badziak, J., Mishra, G., Gupta, N.K. & Holkundkar, A.R. (2011). Generation of ultraintense proton beams by multi-ps circularly polarized laser pulses for fast ignition-related applications. Phys. Plasmas 18, 035108.CrossRefGoogle Scholar
Bartal, T., Foord, M.E., Bellei, C., Key, M.H., Flippo, K.A., Gaillard, S.A., Offermann, D.T., Patel, P.K., Jarrott, L.C., Higginson, D.P., Roth, M., Otten, A., Kraus, D., Stephens, R.B., Mclean, H.S., Giraldez, E.M., Wei, M.S., Gautier, D.C. & Beg, F.N. (2011). Focusing of short-pulse high-intensity laser-accelerated proton beams. Nat. Phys. 4, 139142.Google Scholar
Brenner, C.M., Green, J.S., Robinson, A.P.L., Carrall, D.C., Dromey, B., Foster, P.S., Kar, S., Li, Y.T., Markey, K., Spindloe, C., Streeter, M.J.V., Tolley, M., Wahlstrom, C.-G., Xu, M.H., Zepf, M., Mckenna, P. & Neely, D. (2011). Dependence of laser accelerated protons on laser energy following the interaction of defocused, intense laser pulses with ultra-thin targets. Laser Part. Beams 29, 345351.CrossRefGoogle Scholar
Burza, M., Gonoskov, A., Genoud, G., Persson, A., Svensson, K., Quinn, M., Mckenna, P., Marklund, M. & Wahlstrǒm, C.-G. (2011). Hollow microspheres as targets for staged laser-driven proton acceleration. New J. Phys. 13, 013030.CrossRefGoogle Scholar
Cai, H.B., Mima, K., Zhou, W.M., Jozaki, T., Nagatomo, H., Sunahara, A. & Mason, R.J. (2009). Enhancing the number of high-energy electrons deposited to a compressed pellet via double cones in fast ignition. Phys. Rev. Lett. 102, 245001.CrossRefGoogle ScholarPubMed
Carrié, M., Lefebvre, E., Flaco, A. & Malka, V. (2009). Influence of subpicosecond laser pulse duration on proton acceleration. Phys. Plasmas 16, 053105.CrossRefGoogle Scholar
Daido, H., Nishiuchi, M. & Pirozhkov, A.S. (2012). Review of laser-driven ion sources. Rep. Prog. Phys. 75, 056401.CrossRefGoogle ScholarPubMed
Eliasson, B., Liu, C.S., Shao, X., Sagdeev, R.Z. & Shukla, P.K. (2009). Laser acceleration of monoenergetic protons via a double layer emerging from an ultra-thin foil. New J. Phys. 11, 073006.CrossRefGoogle Scholar
Esirkepov, T.Zh., Bulanov, S.V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V.S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y., Nagai, K. & Sakabe, S. (2002). Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phy. Rev. Lett. 89, 175003/14.CrossRefGoogle ScholarPubMed
Esirkepov, T., Yamagiwa, M. & Tajima, T. (2006). Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. Phys. Rev. Lett. 96, 105001.CrossRefGoogle ScholarPubMed
Flacco, A., Sylla, F., Veltcheva, M., Carrié, M., Nuter, R., Lefebvre, E., Batani, D. & Malka, V. (2010). Dependence on pulse duration and foil thickness in high-contrast-laser proton acceleration. Phys. Rev. E. 81, 036405.CrossRefGoogle ScholarPubMed
Fourkal, E., Velchew, I. & Ma, C.-M. (2005). Coulomb explosion effect and the maximum energy of protons accelerated by high-power lasers. Phys. Rev. E. 71, 036412.CrossRefGoogle ScholarPubMed
Fuchs, J., Antici, P., D'Humières, E., Lefebvre, E., Borghesi, M., Brambrink, E., Cecchetti, C.A., Kaluza, M., Malka, V., Manclossi, M., Meyroneinc, S., Mora, P., Schreiber, J., Toncian, T., Pepin, H. & Audebert, P. (2006). Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2, 4854.CrossRefGoogle Scholar
Hegelich, B.M., Albright, B.J., Cobble, J., Flippo, K., Letzring, S., Paffet, M., Ruhl, H., Schreiber, J., Schulze, R. & Fernández, J.C. (2006). Laser acceleration of quasi-monoenergetic MeV ion beams. Nat. (London) 439, 441.CrossRefGoogle ScholarPubMed
Klimo, O., Psikal, J., Limpouch, J., Proska, J., Novotny, F., Ceccotti, T., Floquet, V. & Kawata, S. (2011). Short pulse laser interaction with micro-structured targets: simulations of laser absorption and ion acceleration. New J. Phys. 13, 053028.CrossRefGoogle Scholar
Lefebvre, E., Gremillet, L., Lévy, A., Nuter, R., Antici, P., Carrié, M., Ceccotti, T., Drouin, M., Fuchs, J., Malka, V. & Neely, D. (2010). Proton acceleration by moderately relativistic laser pulses interacting with solid density targets. New J. Phys. 12, 045017.CrossRefGoogle Scholar
Li, C.K, Séguin, F.H., Frenje, J.A., Rygg, J.R., Petrasso, R.D., Town, R.P.J., Amendt, P.A., Hatchett, S.P., Landen, O.L., Mackinnon, A.J., Patel, P.K., Smalyuk, V.A., Sangster, T.C. & Knauer, J.P. (2006). Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. Phys. Rev. Lett. 97, 135003.CrossRefGoogle Scholar
Li, C.K., Séguin, F.H., Frenje, J.A.R., Petrasso, R.D., Amendt, P.A., Town, R.P.J., Landen, O.L., Rygg, J.R., Betti, R., Knauer, J.P., Meyerhofer, D.D., Soures, J.M., Back, C.A., Kilkenny, J.D. & Nikroo, A. (2009). Observations of electromagnetic fields and plasma flow in hohlraums with proton radiography. Phys. Rev. Lett. 102, 205001.CrossRefGoogle ScholarPubMed
Malka, V., Fritzler, S., Lefebvre, E., D'Humieres, E., Ferrand, R., Grillon, G., Albaret, C., Meyroneinc, S., Chambaret, J.-P., Antonetti, A. & Hulin, D. (2004). Practicability of protontherapy using compact laser systems. Med. Phys. 31, 1587.CrossRefGoogle ScholarPubMed
Mora, P. (2005). Thin-foil expansion into a vacuum. Phys. Rev. E 72, 056401.CrossRefGoogle ScholarPubMed
Nodera, Y., Kawata, S., Onuma, N., Limpouch, J., Klimo, O. & Kikuch, T. (2008). Improvement of energy-conversion efficiency from laser to proton beam in a laser-foil interaction. Phys. Rev. E. 78, 046401.CrossRefGoogle Scholar
Pae, K.H., Choi, I.W. & Lee, J. (2011). Effect of target composition on proton acceleration by intense laser pulses in the radiation pressure acceleration regime. Laser Part. Beams 29, 1116.CrossRefGoogle Scholar
Passoni, M., Bertagna, L. & Zani, A. (2010). Target normal sheath acceleration: theory, comparison with experiments and future perspectives. New J. Phys. 12, 045012.CrossRefGoogle Scholar
Passoni, M. & Lontano, M. (2008). Theory of Light-Ion Acceleration Driven by a Strong Charge Separation. Phys. Rev. Lett. 101, 115001.CrossRefGoogle ScholarPubMed
Pfotenhauer, S.M., Jäckel, O., Sachtleben, A., Polz, J., Ziegler, W., Schlenvoigt, H.-P., Amthor, K.-U., Kaluza, M.C., Ledingham, K.W.D., Sauerbrey, R., Gibbon, P., Robinson, A.P.L. & Schwoerer, H. (2008). Spectral shaping of laser generated proton beams. New J. Phys. 10, 033034.CrossRefGoogle Scholar
Pukhov, A., Kumar, N., Tückmantel, T., Upadhyay, A., Lotov, K., Muggli, P., Khudik, V., Siemon, C. & Shvets, G. (2011). Phase velocity and particle injection in a self-modulated proton-driven plasma wakefield accelerator. Phys. Rev. Lett. 107, 145003.CrossRefGoogle Scholar
Robinson, A.P.L., Key, M.H. & Tabak, M. (2012). Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard. Phys. Rev. Lett. 108, 125004.CrossRefGoogle ScholarPubMed
Roth, M., Cowan, T.E., Key, M.H., Hatchett, S.P., Brown, C., Hatchett, S.P., Brown, C., Fountain, W., Johnson, J., Pennington, D.M., Snavely, R.A., Wilks, S.C., Yasuike, K., Ruhl, H., Pegoraro, F., Bulanov, S.V., Campbell, E.M., Perry, M.D. & Powell, H. (2001). Fast Ignition by Intense Laser-Accelerated Proton Beams. Phys. Rev. Lett. 86, 436.CrossRefGoogle ScholarPubMed
Sakagami, H., Okada, K., Kaseda, Y., Taguchi, T. & Johzaki, T. (2012). Collisional effects on fast electron generation and transport in fast ignition. Laser Part. Beams 30, 243248.CrossRefGoogle Scholar
Schwoerer, H., Pfotenhauer, S., Jäckl, O., Amthor, K.-U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K.W.D. & Esirkepov, T. (2006). Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nat. (London) 439, 445.CrossRefGoogle ScholarPubMed
Ter-Avetisyan, S., Schnürer, M., Nickles, P. V., Sandner, W., Nakamura, T. & Mima, K. (2009). Correlation of spectral, spatial, and angular characteristics of an ultrashort laser driven proton source. Phys. Plasmas 16, 043108.CrossRefGoogle Scholar
Wilks, S.C., Langdon, A.B., Cowan, T.E., Roth, M., Singh, M., Hatchett, S., Key, M.H., Pennington, D., MacKinnon, A. & Snavely, R.A. (2001). Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas 8, 542.CrossRefGoogle Scholar
Yu, J.Q., Jin, X.L., Zhou, W.M., Li, B. & Gu, Y.Q. (2013). High-order interpolation algorithms for charge conservation in particle-in-cell simulations. Commun. Comput. Phys. 13, 1194–1150.CrossRefGoogle Scholar
Yu, J.Q., Zhou, W.M., Cao, L.H., Zhao, Z.Q., Cao, L.F., Shan, L.Q., Liu, D.X., Jin, X.L., Li, B. & Gu, Y.Q. (2012 a). Enhancement in coupling efficiency from laser to forward hot electrons by conical nanolayered target. Appl. Phys. Lett. 100, 204101.CrossRefGoogle Scholar
Yu, J.Q., Zhou, W.M., Jin, X.L., Cao, L.H., Zhao, Z.Q., Hong, W., Li, B. & Gu, Y.Q. (2012 b). Improvement of proton energy in high-intensity laser-nanobrush target interactions. Laser Part. Beams 30, 307311.CrossRefGoogle Scholar
Zeil, K., Kraft, S.D., Bock, S., Bussmann, M., Cowan, T.E., Kluge, T., Metzkes, J., Richter, T., Sauerbrey, R. & Schramm, U. (2010). The scaling of proton energies in ultrashort pulse laser plasma acceleration. New J. Phys. 12, 045015–16.CrossRefGoogle Scholar
Zhang, Z.Y., Shen, B.F., Zhang, X.M., Wang, F.C. & Ji, L.L. (2009). Energetic-ion generation by the combination of laser pressure and Coulomb explosion. Chinese Physics B, 18(12), 5395–06.CrossRefGoogle Scholar
Zhou, W.M., Gu, Y.Q., Hong, W., Zhao, Z.Q., Ding, Y.K., Zhang, B.H., Cai, H.B. & Mima, K. (2010). Enhancement of monoenergetic proton beams via cone substrate in high intensity laser pulse-double layer target interactions. Laser Part. Beams 28, 585590.CrossRefGoogle Scholar