Skip to main content Accessibility help

Improvement of ion acceleration in radiation pressure acceleration regime by using an external strong magnetic field

  • H. Cheng (a1), L. H. Cao (a1) (a2) (a3), J. X. Gong (a2), R. Xie (a2), C. Y. Zheng (a1) (a2) (a3) and Z. J. Liu (a1) (a2)...


Two-dimensional particle-in-cell (PIC) simulations have been used to investigate the interaction between a laser pulse and a foil exposed to an external strong longitudinal magnetic field. Compared with that in the absence of the external magnetic field, the divergence of proton with the magnetic field in radiation pressure acceleration (RPA) regimes has improved remarkably due to the restriction of the electron transverse expansion. During the RPA process, the foil develops into a typical bubble-like shape resulting from the combined action of transversal ponderomotive force and instabilities. However, the foil prefers to be in a cone-like shape by using the magnetic field. The dependence of proton divergence on the strength of magnetic field has been studied, and an optimal magnetic field of nearly 60 kT is achieved in these simulations.


Corresponding author

Author for correspondence: Lihua Cao, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China. E-mail:


Hide All
Abe, Y, Law, KFF, Korneev, P, Fujioka, S, Kojima, S, Lee, SH, Sakata, S, Matsuo, K, Oshima, A, Arikawa, Y, Yogo, A, Nakai, A, Norimatsu, T, Humiers, E, Santos, JJ, Kondo, K, Sunahara, A, Gus'kov, S and Tikhonchuk, V (2018) Whispering gallery effect in relativistic optics. JETTP Letters 107, 351354.
Arber, TD, Bennett, K, Brady, CS, Lawrence-Douglas, A, Ramsay, MG, Sircombe, NJ, Gillies, P, Evans, RG, Schmitz, H, Bell, AR and RIdgers, CP (2015) Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Physics and Controlled Fusion 5, 113001.
Arefiev, A, Toncian, T and Fiksel, G (2016) Enhanced proton acceleration in an applied longitudinal magnetic field. New Journal of Physics 18, 105011.
Bulanov, SV and Khoroshkov, VS (2002) Feasibility of using laser ion accelerators in proton therapy. Plasma Physics Reports 28, 453.
Bulanov, SS, Brantov, A, Bychenkov, VY, Chvykov, V, Kalinchenko, G, Matsuoka, T, Rousseau, P, Reed, S, Yanovsky, V, Litzenberg, DW, Krushelnick, K and Maksimchuk, A (2008) Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Physical Review E 78, 026412.
Bulanov, SS, Esarey, E, Schroeder, CB, Bulanov, SV, Esirkepov, TZ, Kando, M, Pegoraro, F and Leemans, WP (2015) Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure. Physical Review Letters 114, 105003.
Daido, H, Miki, F, Mima, K, Fujita, M, Sawai, K, Fujita, H, Kitagawa, Y, Nakai, S and Yamanaka, C (1986) Generation of a strong magnetic field by an intense CO2 laser pulse. Physical Review Letters 56, 846849.
Daido, H, Nishiuchi, M and Pirozhkov, AS (2012) Review of laser-driven ion sources and their applications. Reports of Progress in Physics 75, 056401.
Dollar, F, Zulick, C, Thomas, AGR, Chvykov, V, Davis, J, Kalinchenko, G, Matsuoka, T, McGuffey, C, Petrov, GM, Willingale, L, Yanovsky, V, Maksimchuk, A and Krushelnick, K (2012) Finite spot effects on radiation pressure acceleration from intense high-contrast laser interactions with thin targets. Physical Review Letters 108, 175005.
Edwards, RD, Sinclair, MA, Goldsack, TJ, Krushelnick, K, Beg, FN, Clark, EL, Dangor, AE, Najmudin, Z, Tatarakis, M, Walton, B, Zepf, M, Ledingham, KWD, Spencer, I, Norreys, PA, Clarke, RJ, Kodama, R, Toyama, Y and Tampo, M (2002) Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography. Applied Physics Letters 80, 21292131.
Esirkepov, T, Borghesi, M, Bulanov, SV, Mourou, G and Tajima, T (2004) Highly efficient relativistic-ion generation in the laser-piston regime. Physical Review Letters 92, 175003.
Fujioka, S, Zhang, Z, Ishihara, K, Shigemori, K, Hironaka, Y, Johzaki, T, Sunahara, A, Yamamoto, N, Nakashima, H, Watanabe, T, Shiraga, H, Nishimura, H and Azechi, H (2013) Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Scientific Reports 3, 1170.
Gong, JX, Cao, LH, Pan, KQ, Xiao, KD, Wu, D, Zheng, CY, Liu, ZJ and He, XT (2017) Enhancing the electron acceleration by a circularly polarized laser interaction with a cone-target with an external longitudinal magnetic field. Physics of Plasmas 24, 033103.
Hatchett, SP, Brown, CG, Cowan, TE, Henry, EA, Johnson, JS, Key, MH, Koch, JA, Langdon, AB, Lasinski, BF, Lee, RW, Mackinnon, AJ, Pennington, DM, Perry, MD, Phillips, TW, Roth, M, Sangster, TC, Singh, MS, Snavely, RA, Stoyer, MA, Wilks, SC and Yasuike, K (2000) Electron, photon, and ion beams from the relativistic interaction of petawatt laser pulses with solid targets. Physics of Plasmas 7, 2076.
Honrubia, JJ, Morace, A and Murakami, M (2017) On the intense proton beam generation and transport in hollow cones. Matter and Radiation at Extremes 2, 28.
Kim, IJ, Pae, KH, Choi, IW, Lee, CL, Kim, HT, Singhal, H, Sung, JH, Lee, SK, Lee, HW, Nickles, PV, Jeong, TM, Kim, CM and Nam, CH (2016) Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses. Physics of Plasmas 23, 070701.
Klimo, O, Psikal, J, Limpouch, J and Tikhonchuk, VT (2008) Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Physical Review Accelerators and Beams 11, 031301.
Kovalev, VF and Bychenkov, VY (2003) Analytic solutions to the Vlasov equations for expanding plasmas. Physical Review Letters 90, 185004.
Macchi, A, Veghini, S and Pegoraro, F (2009) “Light Sail” acceleration reexamined. Physical Review Letters 103, 085003.
Mora, P (2003) Plasma expansion into a vacuum. Physical Review Letters 90, 185002.
Nakamura, D, Ikeda, A, Sawabe, H, Matsuda, YH and Takeyama, S (2018) Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Review of Scientific Instruments 189, 095106.
Palmer, CAJ, Schreiber, J, Nagel, SR, Dover, NP, Bellei, C, Beg, FN, Bott, S, Clarke, RJ, Dangor, AE, Hassan, SM, Hilz, P, Jung, D, Kneip, S, Mangles, SPD, Lancaster, KL, Rehman, A, Robinson, APL, Spindloe, C, Szerypo, J, Tatarakis, M, Yeung, M, Zepf, M and Najmudin, Z (2012) Rayleigh–Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser. Physical Review Letters 108, 225002.
Pegoraro, F and Bulanov, SV (2007) Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse. Physical Review Letters 99, 065002.
Robinson, APL, Zepf, M, Kar, S, Evans, R and Bellei, C (2008) Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New Journal of Physics 10, 013021.
Roth, M, Cowan, TE, Key, MH, Hatchett, SP, Brown, C, Fountain, W, Johnson, J, Pennington, DM, Snavely, RA, Wilks, SC, Yasuike, K, Ruhl, H, Pegoraro, F, Bulanov, SV, Campbell, EM, Perry, MD and Powell, H (2001) Fast ignition by intense laser-accelerated proton beams. Physical Review Letters 86, 436439.
Shen, XF, Qiao, B, Zhang, H, Kar, S, Zhou, CT, Chang, HX, Borghesi, M and He, XT (2017) Achieving stable radiation pressure acceleration of heavy ions via successive electron replenishment from ionization of a high-z material coating. Physical Review Letters 118, 204802.
Stark, DJ, Toncian, T and Arefiev, AV (2016) Enhanced multi-MeV photon emission by a laser-driven electron beam in a self-generated magnetic field. Physical Review Letters 116, 185003.
Wagner, F, Deppert, O, Brabetz, C, Fiala, P, Kleinschmidt, A, Poth, P, Schanz, VA, Tebartz, A, Zielbauer, B, Roth, M, Stohlker, T and Bagnoud, V (2016) Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Physical Review Letters 116, 205002.
Wang, HY, Yan, XQ, Chen, JE, He, XT, Ma, WJ, Bin, JH, Schreiber, J, Tajima, T and Habs, D (2013) Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse. Physics of Plasmas 20, 013101.
Weng, SM, Murakami, M and Sheng, ZM (2015) Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets. Laser and Particle Beams 33, 103107.
Wilks, SC, Langdon, AB, Cowan, TE, Roth, M, Singh, M, Hatchett, S, Key, MH, Pennington, D, Mackinnon, A and Snavely, RA (2001) Energetic proton generation in ultra-intense laser–solid interactions. Physics of Plasmas 8, 542.
Yan, XQ, Wu, HC, Sheng, ZM, Chen, JE and Meyer-ter-Vehn, J (2009) Self-organizing GeV, nanocoulomb, collimated proton beam from laser foil interaction at 7 × 1021 W/cm2. Physical Review Letters 103, 135001.
Yogo, A, Mima, K, Iwata, N, Tosaki, S, Morace, A, Arikawa, Y, Fujioka, S, Johzaki, T, Sentoku, Y, Nishimura, H, Sagisaka, A, Matsuo, K, Kamitsukasa, N, Kojima, S, Nagatomo, H, Nakai, M, Shiraga, H, Murakami, M, Tokita, S, Kawanaka, J, Miyanaga, N, Yamanoi, K, Norimatsu, T, Sakagami, H, Bulanov, SV, Kondo, K and Azechi, H (2017) Boosting laser-ion acceleration with multi-picosecond pulses. Physics of Plasmas 7, 42451.
Yoon, PH and Davidson, RC (1987) Exact analytical model of the classical Weibel instability in a relativistic anisotropic plasma. Physical Review A 35, 27182721.
Zou, DB, Zhuo, HB, Yu, TP, Wu, HC, Yang, XH, Shao, FQ, Ma, YY, Yin, Y and Ge, ZY (2015) Enhanced laser-radiation-pressure-driven proton acceleration by moving focusing electric-fields in a foil-in-cone target. Physics of Plasmas 22, 023109.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed