Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T02:41:50.607Z Has data issue: false hasContentIssue false

Imaging with penetrating radiation for the study of small dynamic physical processes

Published online by Cambridge University Press:  14 May 2015

F. E. Merrill*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico
*
Address correspondence and reprint requests to: F. E. Merrill, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico 87544, USA. E-mail: fmerrill@lanl.gov

Abstract

Since Roentgen's discovery of X rays in the late 1800s the use of penetrating radiation to form images has become a part of our everyday life as well as providing a useful tool for the scientific study of processes that have been previously impossible to measure. This can include the study of processes that are too deeply embedded in opaque materials for direct observation, or that occur on a length or time scale smaller than otherwise can be easily measured. As technologies to generate penetrating radiation and quickly collect images have matured, new techniques have emerged to measure processes that have been hidden for many years. One example is advances in flash radiography using charged particles as radiographic probes, including proton radiography and electron radiography. Recently the successful commissioning of proton microscope systems has provided remarkable improvements in spatial resolution. These techniques are being implemented for applications with electron radiography. With the evolution of these new techniques comes the opportunity to choose the probe that provides the maximum information for the desired measurement. This paper describes these new imaging techniques, predicts the capabilities of high-energy electron radiography, and provides a guide for identifying the optimal probe for a wide range of measurements.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beer, A. (1852). Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys. Chem. 86, 7890.CrossRefGoogle Scholar
Burtsev, V.V., Lebedev, A.I., Mikhailov, A.L., Ogorodnikov, V.A., Oreshkov, O.V., Panov, K.N., Rudnev, A.V., Svirskii, O.V., Syrunin, M.A., Trutnev, Yu. A. & Khramov, I.V. (2011). Use of multiframe proton radiography to investigate fast hydrodynamic processes. Combus. Explosion Shock Waves 47, 627638.CrossRefGoogle Scholar
Hirayama, H., Namito, Y., Nelson, W.R., Bielajew, A.F. & Wilderman, S.J. (2005). The EGS5. KEK Report 2005-8, SLAC-R-730.Google Scholar
King, N.S.P., Ables, E., Adams, K., Alrick, K.R., Amann, J.F., Balzar, S., Barnes, P.D. Jr., Crow, M.L., Cushing, S.B., Eddleman, J.C., Fife, T.T., Flores, P., Fujino, D., Gallegos, R.A., Gray, N.T., Hartouni, E.P., Hogan, G.E., Holmes, V.H., Jaramillo, S.A., Knudsson, J.N., London, R.K., Lopez, R.R., McDonald, T.E., McClelland, J.B., Merrill, F.E., Morley, K.B., Morris, C.L., Naivar, F.J., Parker, E.L., Park, H.S., Pazuchanics, P.D., Pillai, C., Riedel, C.M., Sarracino, J.S., Shelley, F.E., Stacy, H.L. Jr., Takala, B.E., Thompson, R., Tucker, H.E., Yates, G.J., Ziock, H.-J. & Zumbro, J.D. (1999). An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instrum. Methods Phys. Res. A 424, 8491.CrossRefGoogle Scholar
Li, C.K., Seguin, F.H., Rygg, J.R., Frenje, J.A., Manuel, M., Petrasso, R.D., Betti, R., Delettrez, J., Knauer, J.P., Marshall, F., Meyerhofer, D.D., Shvarts, D., Smalyuk, V.A., Stoeckl, C., Landen, O.L., Town, R.P.J., Back, C.A. & Kilkenny, J.D. (2008). Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion. Phys. Rev. Lett. 100, 225001.CrossRefGoogle ScholarPubMed
Merrill, Frank E., Morris, C.L., Folkman, K., Harmon, F., Hunt, A. & King, B. (2005). Portable electron radiography system. Proc. of Particle Accelerator Conf., PAC2005 IEEE, pp. 627–638.CrossRefGoogle Scholar
Merrill, F.E., Harmon, F., Hunt, A., Mariam, F., Morley, K., Morris, C., Saunders, A. & Schwartz, C. (2007). Electron radiography. Nucl. Instrum. Methods Phys. Res. B 261, 382386.CrossRefGoogle Scholar
Merrill, F.E., Campos, E., Espinoza, C., Hogan, G., Hollander, B., Lopez, J., Mariam, F.G., Morley, D., Morris, C.L., Murray, M., Saunders, A., Schwartz, C. & Thompson, T.N. (2011). Magnifying lens for 800 MeV proton radiography. Rev. Sci. Instrum. 81, 103709.CrossRefGoogle Scholar
Merrill, F.E., Bower, D., Buckles, R., Clark, D.D., Danly, C.R., Drury, O.B., Dzenitis, J.M., Fatherley, V.E., Fittinghoff, D.N., Gallegos, R., Grim, G.P., Guler, N., Loomis, E.N., Lutz, S., Malone, R.M., Martinson, D.D., Mares, D., Morley, D.J., Morgan, G.L., Oertel, J.A., Tregillis, I.L., Volegov, P.L., Weiss, P.B.,Wilde, C.H. & Wilson, D.C. (2012). The neutron imaging diagnostic at NIF. Rev. Sci. Instrum. 83, 10D317.CrossRefGoogle ScholarPubMed
Merrill, F.E., Barlow, D.B., Espinoza, C.J., Hollander, B.J., Kwiatkowski, K., Lopez, J.D., Mariam, F.G., Morley, D.J., Morris, C.L., Nedrow, P., Saunders, A., Tainter, A.M., Tupa, D. & Tybo, J. (2014). Imaging systems for 800 MeV proton radiography. Proc. of the IPAC 2014, p. 4057.Google Scholar
Morris, C.L., Ables, E., Alrick, K.R., Aufderheide, M.B., Barnes, P.D. Jr., Buescher, K.L., Cagliostro, D.J., Clark, D.A., Clark, D.J., Espinoza, C.J., Ferm, E.N., Gallegos, R.A., Gardner, S.D., Gomez, J.J., Greene, G.A., Hanson, A., Hartouni, E.P., Hogan, G.E., King, N.S.P., Kwiatkowski, K., Liljestrand, R.P., Mariam, F.G., Merrill, F.E., Morgan, D.V., Morley, K.B., Mottershead, C.T., Murray, M.M., Pazuchanics, P.D., Pearson, J.E., Sarracino, J.S., Saunders, A., Scaduto, J., Schach von Wittenau, A.E., Soltz, R.A., Sterbenz, S., Thompson, R.T., Vixie, K., Wilke, M.D., Wright, D.M. & Zumbro, J.D. (2011). Flash radiography with 24 GeV/c protons. J. Appl. Phys. 109, 104905.CrossRefGoogle Scholar
Morris, C.L., King, N.S., Kwiatkowski, K., Mariam, F. G., Merrill, F.E. & Saunders, A. (2013). Charged particle radiography. Reports on progress in physics. Phys. Soc. (Great Britain) 76, 046301046301.CrossRefGoogle Scholar
Mottershead, C.T. & Zumbro, J.D. (1997). Magnetic optics for proton radiography. Proc. of the 1997 IEEE Particle Accelerator Conf., vol. 2, pp. 1397–1399.Google Scholar
Mottershead, T., Barlow, D., Blind, B., Hogan, G., Jason, A., Memll, F., Morley, K., Moms, C., Saunders, A. & Valdiviez, R. (2003). Design and operation of a proton microscope for radiography at 800 MeV. Proc. of the Particle Accelerator Conf., 2003. PAC 2003 IEEE 1, 702–704.Google Scholar
Roth, M., Jung, D., Falk, K., Guler, N., Deppert, O., Devlin, M., Favalli, A., Fernandez, J., Gautier, D., Geissel, M., Haight, R., Hamilton, C.E., Hegelich, B.M., Johnson, R.P., Merrill, F., Schaumann, G., Schoenberg, K., Schollmeier, M., Shimada, T., Taddeucci, T., Tybo, J.L., Wagner, F., Wender, S.A., Wilde, C.H. & Wurden, G.A. (2013). Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802.CrossRefGoogle ScholarPubMed
Rygg, J.R., Séguin, F.H., Li, C.K., Frenje, J.A., Manuel, J.-E., Petrasso, R.D., Betti, R., Delettrez, J.A., Gotchev, O.V., Knauer, J.P., Meyerhofer, D.D., Marshall, F.J., Stoeckl, C. & Theobald, W. (2008). Proton radiography of inertial fusion implosions. Science 319, 12231225.CrossRefGoogle ScholarPubMed
Wei, G., Qiu, J. & Jing, C. (2014). Electron imaging system for ultrafast diagnostics of HEDLP Optical Engineering+ Applications. Int. Soc. Opt. Photonics 9211, 921104/1–7.Google Scholar