Skip to main content Accessibility help
×
Home

Highly repetitive high energy/power beam combination laser: IFE laser driver using independent phase control of stimulated Brillouin scattering phase conjugate mirrors and pre-pulse technique

  • H.J. KONG (a1), S.K. LEE (a1) and D.W. LEE (a1)

Abstract

A beam combination laser with stimulated Brillouin scattering-phase conjugate mirrors (SBS-PCMs), which is expected to produce a high output energy and power with a repetition rate over 10 Hz, is a candidate for a practically useful laser fusion driver in the future. In order to develop the beam combination laser with SBS-PCMs, it is necessary to control the phase of each SBS wave whose phases are known as inherently random. We have proposed a new phase control technique and demonstrated experimentally that the relative phase difference between two SBS waves can be controlled to a certain value and locked to it with an accuracy less than λ/4. Additionally we have proposed and demonstrated a new technique to preserve the pulse shape of the SBS wave. Based on these experimental results, we have proposed two schemes of the new schemes for the high repetition and high energy/power beam combination laser system (laser fusion driver) using the SBS-PCMs of amplitude division and wave-front division techniques, which can operate with repetition rate over 10 Hz, in this paper.

Copyright

Corresponding author

Address correspondence and reprint requests to H.J. Kong, Department of Physics, Korea Advanced Institute of Science and Technology, Daejon 305-701, South Korea. E-mail: hjkong@kaist.ac.kr

References

Hide All

REFERENCES

Boyd, R.W., Razewski, K. & Narum P. (1990). Noise initiation of stimulated Brillouin scattering. Phys. Rev. A 42, 55145521.
Hogan, W.J. et al. (1995). Energy from Inertial Fusion. Vienna: International Atomic Energy Agency, Chap. 3.
Kong, H.J., Lee, J.Y., Shin, Y.S., Byun, J.O., Park, H.S. & Kim, H. (1997). Beam recombination characteristics in array laser amplification using stimulated Brillouin scattering phase conjugation. Opt. Rev. 4, 277283.
Kong, H.J., Shin, Y.S. & Kim, H. (1999). Beam combination characteristics in an array using stimulated Brillouin scattering phase conjugation mirrors considering partial coherency between the beams. Fus. Engin. Des. 44, 407417.
Kong, H.J., Beak, D.H. & Lee, S.K. (2005). Pre-pulse technique for preserving the wave form of the stimulated Brillouin scattering. Paper in preparation.
Kong, H.J., Lee, S.K., Lee, D.W. & Guo, H. (2004). Phase control of stimulated Brillouin scattering phase conjugate mirrors by a self-generated density modulation. Appl. Phys. Lett. Submitted.
Loree, T.R., Watkins, D.E., Johnson, T.M., Kurnit, N.A. & Fisher, R.A. (1987). Phase locking two beams by means of seeded Brillouin scattering. Opt. Lett. 12, 178180.
Lu, J., Lu, J., Murai, T., Takaichi, K., Uematsu, T., Xu, J., Ueda, K., Yagi, H., Yanagitani, T. & Kaminskii, A.A. (2002). 36-W diode-pumped continuous-wave 1319 nm Nd:YAG ceramic laser. Opt. Lett. 27, 11201122.
Rockwell, D.A. & Giuliano, C.R. (1986). Coherent coupling of laser gain media using phase conjugation. Opt. Lett. 11, 147149.
Rockwell, D.A. (1988). A review of phase-conjugate solid state lasers. IEEE J. Quan. Elect. 24, 11241140.
Yoshida, H., Kmetik, V., Fujita, H., Nakatsuka, M., Yamanaka, T. & Yoshida, K. (1997). Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror. Appl. Opt. 36, 3733744.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed