Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T13:50:40.742Z Has data issue: false hasContentIssue false

High-intensity terahertz generation by nonlinear frequency-mixing of lasers in plasma with DC magnetic field

Published online by Cambridge University Press:  01 July 2015

Anil K. Malik*
Affiliation:
Institute of Optics, University of Rochester, Rochester, New York Department of Physics, Multani Mal Modi College Modinagar, Chaudhary Charan Singh University Meerut, Uttar Pradesh, India
Kunwar Pal Singh
Affiliation:
Singh Simutech Pvt. Ltd., Bharatpur, Rasasthan, India
*
Address correspondence and reprint requests to: Anil K. Malik, Institute of Optics, University of Rochester, NY 14627, USA. E-mail: anilkmalik@gmail.com

Abstract

We propose a mechanism of highly focused, tunable and high-intensity terahertz (THz) radiation generation by frequency-mixing of two super-Gaussian lasers with frequencies ω1, ω2 and wave numbers k1, k2 (laser profile index p > 2) in a corrugated plasma in the presence of external static magnetic field ${B_0}\hat z$. In this process, a strong nonlinear ponderomotive force is offered to the plasma electrons at frequency ω′ = ω1 − ω2 and wave number k′ = k1k2 by laser beams. The ponderomotive force results in a strong, controllable nonlinear transverse oscillatory current, which can be optimized by optimizing the external magnetic field, ripple parameters, and laser indexes. This controllable current produces focused and intense THz radiation of tunable frequency and power along with a remarkable efficiency ~25%.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antonsen, T.M., Palastra, J.J. & Milchberg, H.M. (2007). Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys. Plasmas 14, 033107.CrossRefGoogle Scholar
Appleby, R. & Wallace, H.B. (2007). Standoff detection of weapons and contraband in the 100 GHz to 1 THz region. IEEE Trans. Antennas Propag. 55, 29442956.CrossRefGoogle Scholar
Bartel, T., Gaal, P., Reimann, K., Woerner, M. & Elsacsser, T. (2005). Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 30, 28052807.CrossRefGoogle ScholarPubMed
Breunig, I., Kiessling, J., Sowade, R., Knabe, B. & Buse, K. (2008). Generation of tunable continuous-wave terahertz radiation by photomixing the signal waves of a dual-crystal optical parametric oscillator. New J. Phys. 10, 073003.CrossRefGoogle Scholar
Byrd, J.M., Hao, Z., Martin, M.C., Robin, D.S., Sannibale, F., Schoenlein, R.W., Zholents, A.A. & Zolotorev, M.S. (2006). Tailored terahertz pulses from a laser-modulated electron beam. Phys. Rev. Lett. 96, 164801.CrossRefGoogle ScholarPubMed
Carr, G.L., Martin, M.C., Mckinney, W.R., Jordan, K., Neil, G.R. & Williams, G.P. (2002). High-power terahertz radiation from relativistic electrons. Nature 420, 153156.CrossRefGoogle ScholarPubMed
Chen, Y., Yamaguchi, M., Wang, M. & Zhang, X.C. (2007). Terahertz pulse generation from noble gases. Appl. Phys. Lett. 91, 251116.CrossRefGoogle Scholar
Dai, J., Xie, X. & Zhang, X.C. (2006). Detection of broadband terahertz waves with a laser-induced plasma in gases. Phys. Rev. Lett. 97, 103903.CrossRefGoogle ScholarPubMed
Faure, J., Tilborg, J.V., Kaindl, R.A. & Leemans, W.P. (2004). Modelling laser-based table-top THz sources: Optical rectification, propagation and electro-optic sampling. Opt. Quantum Electron. 36, 681697.CrossRefGoogle Scholar
Ferguson, B. & Zhang, X.C. (2002). Materials for terahertz science and technology. Nat. Mater. 1, 2633.CrossRefGoogle ScholarPubMed
Hamster, H., Sullivan, A., Gordon, S. & Falcone, R.W. (1994). Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671677.CrossRefGoogle ScholarPubMed
Hirori, H., Nagai, M. & Tanaka, K. (2010). Excitonic interactions with intense terahertz pulses in ZnSe/ZnMgSSe multiple quantum wells. Phys. Rev. B 81, 081305.CrossRefGoogle Scholar
Hoffmann, M.C., Hebling, J., Hwang, H.Y., Yeh, K.L. & Nelson, K.A. (2009). Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy. Phys. Rev. B 79, 161201.CrossRefGoogle Scholar
Jiang, Y., Li, D., Ding, Y.J. & Zotova, I.B. (2011). Terahertz generation based on parametric conversion: From saturation of conversion efficiency to back conversion. Opt. Lett. 36, 16081610.CrossRefGoogle ScholarPubMed
Kim, K.Y., Taylor, A.J., Glownia, T.H. & Rodriguez, G. (2008). Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions. Nat. Photonics 2, 605609.CrossRefGoogle Scholar
Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C. & Rossi, F. (2002). Terahertz semiconductor-heterostructure laser. Nature 417, 159.CrossRefGoogle ScholarPubMed
Krafft, G.A. (2004). Compact high-power terahertz radiation source. Phys. Rev. ST Accel. Beams 7, 060704.CrossRefGoogle Scholar
Leemans, W.P., Geddes, C.G.R., Faure, J., Tóth, C., Tilborg, J.V., Schroeder, C.B., Esarey, E., Fubiani, G., Auerbach, D., Marcelis, B., Carnahan, M.A., Kaindl, R.A., Byrd, J. & Martin, M.C. (2003). Observation of terahertz emission from a laser–plasma accelerated electron bunch crossing a plasma-vacuum boundary. Phys. Rev. Lett. 91, 074802.CrossRefGoogle Scholar
Leinß, S., Kampfrath, T., Volkmann, K.V., Wolf, M., Steiner, J.T., Kira, M., Koch, S.W., Leitenstorfer, A. & Huber, R. (2008). Terahertz coherent control of optically dark paraexcitons in Cu2O. Phys. Rev. Lett. 101, 246401.CrossRefGoogle Scholar
Loffler, T., Jacob, F. & Roskos, H.G. (2000). Generation of terahertz pulses by photoionization of electrically biased air. Appl. Phys. Lett. 77, 453455.CrossRefGoogle Scholar
Malik, A.K. & Malik, H.K. (2013). Tuning and focusing of terahertz radiation by DC magnetic field in a laser beating process. IEEE Quantum Electron. 49, 232237.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Kawata, S. (2010). Investigations on terahertz radiation generated by two superposed femtosecond laser pulses. J. Appl. Phys. 107, 113105.CrossRefGoogle Scholar
Malik, A.K., Malik, H.K. & Stroth, U. (2012). Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field. Phys. Rev. E 85, 016401. [43].CrossRefGoogle ScholarPubMed
Malik, H.K. & Malik, A.K. (2011). Tunable and collimated terahertz radiation generation by femtosecond laser pulses. Appl. Phys. Lett. 99, 251101.CrossRefGoogle Scholar
Malik, H.K., Singh, K.P. & Sajal, V. (2014). Highly focused and efficient terahertz radiation generation by photo-mixing of lasers in plasma in the presence of magnetic field. Phys. Plasmas 21, 073104.CrossRefGoogle Scholar
Mclaughlin, R., Corchia, A., Johnston, M.B., Chen, Q., Ciesla, C.M., Arnone, D., Jones, G.A.C., Linfield, E.H., Davies, A.G. & Pepper, M. (2000). Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field. Appl. Phys. Lett. 76, 20382040.CrossRefGoogle Scholar
Neumann, J.G., Fiorito, R.B., O'shea, P.G., Loos, H., Sheehy, B., Shen, Y. & Wu, Z. (2009). Terahertz laser modulation of electron beams. J. Appl. Phys. 105, 053304.CrossRefGoogle Scholar
Rothwell, E.J. & Cloud, M.J. (2009). Electromagnetics. Boca Raton: CRC Press, 211.Google Scholar
Shen, Y., Watanabe, T., Arena, D.A., Kao, C.C., Murphy, J.B., Tsang, T.Y., Wang, X.J. & Carr, G.L. (2007). Nonlinear Cross-Phase Modulation with Intense Single-Cycle Terahertz Pulses. Phys. Rev. Lett. 99, 043901.CrossRefGoogle ScholarPubMed
Shen, Y.C., Today, T.W.P.F., Cole, B.E., Tribe, W.R. & Kemp, M.C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Appl. Phys. Lett. 86, 241116.CrossRefGoogle Scholar
Thomson, M.D., Blank, V. & Roskos, H.G. (2010). Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Opt. Express 18, 2317323182.CrossRefGoogle ScholarPubMed
Thomson, M.D., Kreß, M., Loffler, T. & Roskos, H.G. (2007). Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundaments to applications. Laser Photonics Rev. 1, 349668.Google Scholar
Varshney, P., Sajal, V., Chauhan, P.K., Kumar, R. & Sharma, N.K. (2014). Effects of transverse static electric field on terahertz radiation generation by beating of two transversely modulated Gaussian laser beams in a plasma. Laser Part. Beams 32, 375381.CrossRefGoogle Scholar
Verma, U. & Sharma, A.K. (2009). Laser second harmonic harmonic generation in a rippled density plasma in the presence of azimuthal magnetic field. Laser Part. Beams 27, 719724.CrossRefGoogle Scholar
Wang, W.M., Li, Y.T., Sheng, Z.M., Lu, X. & Zhang, J. (2013). Terahertz radiation by two-color lasers due to the field ionization of gases. Phys. Rev. E 87, 033108.CrossRefGoogle Scholar
Weiss, C., Wallenstein, R. & Beigang, R. (2000). Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces. Appl. Phys. Lett. 77, 41604162.CrossRefGoogle Scholar
Wu, H.C., Sheng, Z.M., Dong, Q.L., Xu, H. & Zhang, J. (2007). Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasmas. Phys. Rev. E 75, 016407.CrossRefGoogle ScholarPubMed
Wu, H.C., Sheng, Z.M. & Zhang, J. (2008). Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator. Phys. Rev. E 77, 046405.CrossRefGoogle ScholarPubMed
Zeitler, J.A. & Gladden, L.F. (2008). n-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. Eur. J. Pharm. Biopharm. 71, 222.CrossRefGoogle Scholar
Zheng, H., Sanchez, A.R. & Zhang, X.C. (2006). Identification and classification of chemicals using terahertz reflective spectroscopic focal plane imaging system. Opt. Express 14, 91309141.CrossRefGoogle Scholar