Skip to main content Accessibility help

High-efficiency acceleration by the combination of laser and electrostatic field

  • H. Lin (a1), C.P. Liu (a1), C. Wang (a1) and B.F. Shen (a1)


A new scheme of particle acceleration is verified by the investigation on single-body dynamics of charged particle in a compound field setup. This compound field setup contains a linear polarized laser field and a DC electric field which is along the direction of laser magnetic field. This setup can cause a charged particle to be of aperiodic motion and significantly high kinetic energy. Moreover, the contribution from the motion vertical to accelerating electric field is fully taken into account and is found to be essential to efficient acceleration. The efficiency of such a setup in acceleration is higher than that of a single laser.


Corresponding author

Address correspondence and reprint requests to: H. Lin, State Key Laboratory of High Field Laser Physics, Information Technology Research Center of Space Laser, Shanghai Institute of Optics and Fine Mechanics, P. O. Box 800-211, Shanghai 201800, China. E-mail:


Hide All
Bochove, E.J., Moore, G.T. & Scully, M.O. (1992). Acceleration of particles by an asymmetric Hermit-Gaussian laser beam. Phys. Rev. A 46, 66406653.
Brown, L.S. & Kibble, T.W.B. (1964). Interaction of intense laser beams with electrons. Phys. Rev. 133, A705A718.
Esarey, E., Sprangle, P. & Krall, J. (1995). Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 54435453.
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24, 252.
Flippo, K., Hegelich, B.M., Albright, B.J., (author list all authors). (2007). Laser-driven ion accelerator: Spectral control, monoenergetic ions and new acceleration mechanisms. Laser Part. Beams 25, 38.
Goreslavsky, S.P., Fedorov, M.V. & Kilpio, A.A. (1995). Relativistic drift of an electron under the influence of a short intense laser pulse. Laser Phys. 5, 10201028.
Haaland, C.M. (1995). Laser electron acceleration in vacuum. Opt. Commun. 114, 280284.
Hartemann, F.V., Fochs, S.N., Le Sage, G.P., Luhmann, N.C., Woodworth, J.G. Jr., Perry, M.D., Chen, Y.J. & Kerman, A.K. (1995). Nonlinear ponderomotive scattering of relativistic electron by an intense laser field at focus. Phys. Rev. E 51, 48334843.
Hartemann, F.V., Van Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C., Baldis, H.A., Gupta, A. & Kerman, A.KI. (1998). Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E 58, 50015012.
Ho, Y.K. & Feng, L. (1994). Absence of net-acceleration of charged particles by a focused laser beam in free space. Phys. Lett. A 184, 440444.
Ho, Y.K., Wang, J.X., Feng, L.Scheid, W. & Hora, H. (1996). Electron scattering by an intense continuous laser beam. Phys. Lett. A 20, 189193.
Hussein, M.S. & Pato, M.P. (1992). Nonlinear amplification of inverse-bremsstrahlung electron acceleration. Phys. Rev. Lett. 68, 11361139.
Hussein, M.S., Pato, M.P. & Kerman, A.K. (1992). Theory of free-wave acceleration. Phys. Rev. A 46, 35623565.
Kawata, S.Maruyama, T., Watanabe, H. & Takahashi, I. (1991). Inverse-bremsstrahlung electron acceleration. Phys. Rev. Lett. 6, 20722075.
Lin, H., Liu, C.P., Du, S.T. & Wang, C. (2013). Transportation and acceleration of free electron by laser and economic monocolor hight-frequency light source. Appl. Phys. Res. 5, 123131.
Moore, C.I., Knauer, J.P. & Meyerhofe, D.D. (1995). Observation of the transition from Thomson to Compton scattering in multiphoton interaction low-energy electrons. Phys. Rev. Lett. 74, 24392442.
Rau, B., Tajima, T. & Hojo, H. (1997). Coherent electron acceleration by subcycle laser pulses. Phys. Rev. Lett. 78, 33103313.
Sarachik, E.S. & Schappert, G.T. (1970). Classical theory of the scattering of intense laser radiation by free electrons. Phys. Rev. D 1, 27382752.
Scheid, W. & Hora, H. (1989). On electron acceleration by plane transverse electromagnetic pulses in vacuum. Laser Part. Beam 7, 315332.
Scully, M.O. & Zubairy, M.S. (1991). Simple laser accelerator: Optics and particle dynamics. Phys. Rev. A 44, 26562663.
Sprangle, P., Esarey, F., Krall, J. & Ting, A. (1996). Vacuum laser acceleration. Opt. Commun. 124, 6973.
Steinhauer, L.C. & Kimura, W.D. (1992). A new approach of laser particle acceleration in vacuum. J. Appl. Phys. 72, 32373245.
Troha, A.L., Van Meter, J.R., Landahl, E.C., Alvis, R.M., Unterberg, A.Z., Li, K., Luhmann, N.C., Kerman, A.K. & Hartemann, F.V. (1999). Vacuum electron acceleration by coherent dipole radiation. Phys. Rev. E 60, 926934.
Yin, L., Albright, B.J., Heglich, B.M. & Fernández, J.C. (2006). GeV laser ion accelerationfrom ultrathin targets: The laser break-out afterburner. Laser Part. Beam 24, 291298.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed